scholarly journals Endocannabinoid enzymes monoacylglycerol lipase and diacylglycerol lipase

2012 ◽  
Author(s):  
Meghan Ryan Johnston

2014 ◽  
Vol 8 ◽  
Author(s):  
Bruno Cécyre ◽  
Marjorie Monette ◽  
Liza Beudjekian ◽  
Christian Casanova ◽  
Jean-François Bouchard


1986 ◽  
Vol 64 (10) ◽  
pp. 976-983 ◽  
Author(s):  
David L. Severson ◽  
Mariette Hee-Cheong

Diacylglycerol lipase and kinase activities were measured in particulate and soluble fractions from rabbit aorta (intima–media) and coronary microvessels. With rabbit aorta, the hydrolysis at the sn-1 position of 1-palmitoyl-2-oleoyl-sn-glycerol had a pH optimum of 5–6 and was greater than hydrolysis at the sn-2 position (pH optimum of 6.5). Only the 2-monoacylglycerol accumulated during incubations at pH 5 and 6.5. These results are consistent with an ordered two-step reaction sequence where the fatty acid at the sn-1 position is released first, followed by the hydrolysis of the fatty acid from the 2-monoacylglycerol by a monoacylglycerol lipase with a neutral pH optimum. Lipase activity (sn-2 hydrolysis) at pH 6.5 was greater than kinase activity at all substrate concentrations. The presence of arachidonate at the sn-2 position of the diacylglycerol increased kinase activity but had little effect on lipase activity. Kinase activity was mainly particulate, whereas 50–60% of diacylglycerol lipase and 50% of monoacylglycerol lipase activity were soluble. Diacylglycerol lipase and kinase were also present in coronary microvessel preparations. Diacylglycerol lipase (sn-2 hydrolysis) activity in coronary microvessels was not enhanced by preincubation of the enzyme preparation with cAMP-dependent protein kinase.



1992 ◽  
Vol 58 (3) ◽  
pp. 1130-1139 ◽  
Author(s):  
Ann C. Allen ◽  
Charles M. Gammon ◽  
Andrea H. Ousley ◽  
Ken D. McCarthy ◽  
Pierre Morell


2012 ◽  
Vol 691 (1-3) ◽  
pp. 93-102 ◽  
Author(s):  
Takahiro Shimizu ◽  
Kenjiro Tanaka ◽  
Kumiko Nakamura ◽  
Keisuke Taniuchi ◽  
Kunihiko Yokotani


2021 ◽  
Vol 14 (12) ◽  
pp. 1316
Author(s):  
Justin Matheson ◽  
Xin Ming Matthew Zhou ◽  
Zoe Bourgault ◽  
Bernard Le Foll

The endocannabinoid system (ECS) plays an integral role in maintaining metabolic homeostasis and may affect hunger, caloric intake, and nutrient absorption. Obesity has been associated with higher levels of the endogenous cannabinoid transmitters (endocannabinoids). Therefore, the ECS is an important target in obesity treatment. Modulating the enzymes that synthesize and degrade endocannabinoids, namely fatty acid amide hydrolase (FAAH), monoacylglycerol lipase (MAGL), and diacylglycerol lipase (DAGL), may be a promising strategy to treat obesity. This review aims to synthesize all studies investigating pharmacological or genetic manipulation of FAAH, MAGL, or DAGL enzymes in association with obesity-related measures. Pharmacological inhibition or genetic deletion of FAAH tended to promote an obesogenic state in animal models, though the relationships between human FAAH polymorphisms and obesity-related outcomes were heterogeneous, which could be due to FAAH having both pro-appetitive and anti-appetitive substrates. Genetic deletion of Mgll and Dagla as well as pharmacological inhibition of DAGL tended to reduce body weight and improve metabolic state in animal studies, though the effects of Mgll manipulation were tissue-dependent. Monitoring changes in body weight in ongoing clinical trials of FAAH inhibitors may clarify whether FAAH inhibition is a potential therapeutic strategy for treatment obesity. More preclinical work is needed to characterize the role of MAGL and DAGL modulation in obesity-related outcomes.



2021 ◽  
Vol 22 (11) ◽  
pp. 6148
Author(s):  
Matteo Miceli ◽  
Silvana Casati ◽  
Pietro Allevi ◽  
Silvia Berra ◽  
Roberta Ottria ◽  
...  

A novel bioluminescent Monoacylglycerol lipase (MAGL) substrate 6-O-arachidonoylluciferin, a D-luciferin derivative, was synthesized, physico-chemically characterized, and used as highly sensitive substrate for MAGL in an assay developed for this purpose. We present here a new method based on the enzymatic cleavage of arachidonic acid with luciferin release using human Monoacylglycerol lipase (hMAGL) followed by its reaction with a chimeric luciferase, PLG2, to produce bioluminescence. Enzymatic cleavage of the new substrate by MAGL was demonstrated, and kinetic constants Km and Vmax were determined. 6-O-arachidonoylluciferin has proved to be a highly sensitive substrate for MAGL. The bioluminescence assay (LOD 90 pM, LOQ 300 pM) is much more sensitive and should suffer fewer biological interferences in cells lysate applications than typical fluorometric methods. The assay was validated for the identification and characterization of MAGL modulators using the well-known MAGL inhibitor JZL184. The use of PLG2 displaying distinct bioluminescence color and kinetics may offer a highly desirable opportunity to extend the range of applications to cell-based assays.



Sign in / Sign up

Export Citation Format

Share Document