scholarly journals DEEP REINFORCEMENT LEARNING FOR HAPTIC SHARED CONTROL IN UNKNOWN TASKS

Author(s):  
FRANKLIN CARDENOSO FERNANDEZ
2019 ◽  
Vol 40 (1) ◽  
pp. 105-117
Author(s):  
Yanan Li ◽  
Keng Peng Tee ◽  
Rui Yan ◽  
Shuzhi Sam Ge

Purpose This paper aims to propose a general framework of shared control for human–robot interaction. Design/methodology/approach Human dynamics are considered in analysis of the coupled human–robot system. Motion intentions of both human and robot are taken into account in the control objective of the robot. Reinforcement learning is developed to achieve the control objective subject to unknown dynamics of human and robot. The closed-loop system performance is discussed through a rigorous proof. Findings Simulations are conducted to demonstrate the learning capability of the proposed method and its feasibility in handling various situations. Originality/value Compared to existing works, the proposed framework combines motion intentions of both human and robot in a human–robot shared control system, without the requirement of the knowledge of human’s and robot’s dynamics.


2015 ◽  
Vol 29 (22) ◽  
pp. 1463-1481 ◽  
Author(s):  
Wenxia Xu ◽  
Jian Huang ◽  
Yongji Wang ◽  
Chunjing Tao ◽  
Lei Cheng

Decision ◽  
2016 ◽  
Vol 3 (2) ◽  
pp. 115-131 ◽  
Author(s):  
Helen Steingroever ◽  
Ruud Wetzels ◽  
Eric-Jan Wagenmakers

Sign in / Sign up

Export Citation Format

Share Document