scholarly journals Enhanced electrical properties of styrene-grafted polypropylene insulation for bulk power transmission HVDC cable

2013 ◽  
Vol 133 (4) ◽  
pp. 313-323 ◽  
Author(s):  
Kuniaki Anzai ◽  
Kimihiko Shimomura ◽  
Soshi Yoshiyama ◽  
Hiroyuki Taguchi ◽  
Masaru Takeishi ◽  
...  

2004 ◽  
Author(s):  
Chao-Liang Chang ◽  
Uei-Ming Jow ◽  
Chao-Ta Huang ◽  
Hsiang-Chi Liu ◽  
Jr-Yuan Jeng ◽  
...  

The micro-inductor is a key component in wireless power transmission micro modules. In this paper, an optimum design for the micro-inductor was studied and related MEMS fabrication techniques were also developed. Commercial electromagnetic property analysis software, ANSOFT, was used to screen the main design factors of the micro-inductor. It was found that the high inductance and high quality factors of the micro-inductor implied high power transmission efficiency for the micro-module’s wireless power transmission. The electrical performance of the micro-inductor was affected by the thermal stress and thermal strain induced in the operational environment of the wireless power transmission micro-module. In order to investigate the reliability of the micro-inductor, commercial stress analysis software, ANSYS, was used to calculate thermal stress and thermal strain. The deformed model of the micro-inductor was then imported into ANSOFT in order to calculate its electrical properties. Glass substrate Pyrex 7740 was used to reduce the substrate loss of the magnetic flux of the micro-inductor. The surface micromachining technique, a kind of MEMS processing, was chosen to fabricate the micro-inductor; the coil of the micro-inductor was electroplated with copper to reduce the series resistance. The minimum line width and line space of the coil were 20 μm and 20 μm respectively. Polyimide (PI) was used for supporting the structure of micro-inductors. The maximum shear stress was 74.09MPa and the maximum warpage was 2.197 μm at a thermal loading of 125°C. For the simulated data, the most suitable areas for 31-turn and 48-turn coils were at an area ratio of 1.27 and 2, respectively. The electrical properties of the inductors changed slightly under thermal loading.


1982 ◽  
Vol PER-2 (11) ◽  
pp. 34-35
Author(s):  
K. Tsujimoto ◽  
T. Yukino ◽  
K. Naito ◽  
J. Hirai ◽  
M. Inoue ◽  
...  

Author(s):  
Xianghui Huang ◽  
Samuel T. McJunkin

Subsea power transmission and distribution is an emerging technology that may enable the oil and gas industry to produce hydrocarbon reserves in deeper and more remote offshore waters. The longer tieback subsea operations will likely require pumps and compressors driven by electric motors to be located on the sea floor to pressure boost the oil and gas to surface and/or onshore platforms. Existing HVAC and HVDC technologies are efficient means for subsea power transmission and distribution. However, they are subject to a variety of limitations, for instance, the single-point failures that would impact production uptime. Furthermore, it is challenging to implement subsea bulk power transmission and distribution by using existing architectures due to the footprint, weight and electrical insulation requirements. This paper describes a subsea power distribution architecture — AC ring. It can be used to interface a high-voltage bulk power transmission network, either AC or DC, to a subsea multi-load AC system. The new topology uses series-connected, by-passable, open-winding transformers to provide better modular design flexibility. The system is expected to be more reliable than conventional “hub and spoke” architectures and more technically feasible regarding practical subsea equipment designs.


Sign in / Sign up

Export Citation Format

Share Document