scholarly journals The Role of Loop Height and Design on its Force Characteristics in Alignment of Teeth: A Finite Element Analysis

2016 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Atefe Saffar Shahroudi
2020 ◽  
Vol 29 (2) ◽  
pp. 347-354 ◽  
Author(s):  
Vani J. Sabesan ◽  
Diego J.L. Lima ◽  
Yang Yang ◽  
Matthew C. Stankard ◽  
Mauricio Drummond ◽  
...  

2018 ◽  
Vol 7 (2) ◽  
pp. 148-156 ◽  
Author(s):  
M. Pinheiro ◽  
C. A. Dobson ◽  
D. Perry ◽  
M. J. Fagan

Objectives Legg–Calvé–Perthes’ disease (LCP) is an idiopathic osteonecrosis of the femoral head that is most common in children between four and eight years old. The factors that lead to the onset of LCP are still unclear; however, it is believed that interruption of the blood supply to the developing epiphysis is an important factor in the development of the condition. Methods Finite element analysis modelling of the blood supply to the juvenile epiphysis was investigated to understand under which circumstances the blood vessels supplying the femoral epiphysis could become obstructed. The identification of these conditions is likely to be important in understanding the biomechanics of LCP. Results The results support the hypothesis that vascular obstruction to the epiphysis may arise when there is delayed ossification and when articular cartilage has reduced stiffness under compression. Conclusion The findings support the theory of vascular occlusion as being important in the pathophysiology of Perthes disease. Cite this article: M. Pinheiro, C. A. Dobson, D. Perry, M. J. Fagan. New insights into the biomechanics of Legg-Calvé-Perthes’ disease: The Role of Epiphyseal Skeletal Immaturity in Vascular Obstruction. Bone Joint Res 2018;7:148–156. DOI: 10.1302/2046-3758.72.BJR-2017-0191.R1.


1991 ◽  
Vol 28 (1) ◽  
pp. 51-61 ◽  
Author(s):  
N. Yoshida ◽  
N. R. Morgenstern ◽  
D. H. Chan

The softening process as observed in fissured, overconsolidated clays and mudstones is discussed in detail. Softening is classified into internal and external processes. The effect of softening is to decrease the shear strength of a material and its dilatant characteristics. This shear strength reduction is represented as a lowering of the failure envelope and a reduction in the degree of nonlinearity at low stress levels. There are some restrictions related to stress paths that affect the initiation of softening. The softening process may be formulated in terms of a time-dependent yield surface, and the finite-element method can be extended to analyze softening effects. A cut slope is analyzed as an example. The development with time of deformations is traced up to the collapse of the slope. This example contains the essentials to portray the role of the mechanism of softening. A distinction can be made between time-dependent deformation due to softening and those associated with conventional creep mechanisms. Key words: softening, time-dependent strength reduction, finite-element analysis.


Sign in / Sign up

Export Citation Format

Share Document