Lateral Variations of the Mantle Transition Zone Structure beneath Eastern China

2014 ◽  
Vol 104 (3) ◽  
pp. 1533-1539 ◽  
Author(s):  
H. Huang ◽  
P. Wang ◽  
N. Mi ◽  
Z. Huang ◽  
M. Xu ◽  
...  
2020 ◽  
Vol 221 (2) ◽  
pp. 1110-1124 ◽  
Author(s):  
Yanhui Zhang ◽  
Aihua Weng ◽  
Shiwen Li ◽  
Yue Yang ◽  
Yu Tang ◽  
...  

SUMMARY Constraining the distribution of water in different regions of the mantle remains one of the significant challenges to comprehend the global deep water cycle. Geomagnetic depth soundings can provide such constraint through the electrical conductivity structure. Hence, this study aims to propose a regularization technique that can estimate previously unavailable C-response. In the method, the objective function comprised an L1-norm measured data prediction error and a spectral smoothness constraint term. We used the data error of C-response to weight the predicted error. The L-BFGS method was introduced to determine the minimum point of the objective function, and the regularization parameter decreased adaptively during inversion. Thus, the geomagnetic data processed yielded high-quality C-responses in 31 stations in Eastern China. In addition, we obtained 1-D electrical conductivity profiles in the mantle transition zone (MTZ) beneath Eastern China from C-responses using the L-BFGS method. Compared with the global 1-D model, the conductivity–depth profiles revealed that the MTZ beneath Eastern China is more conductive in the east but more resistive in the west. The conversion of these conductivities to water content based on the mineral physics suggested that the MTZ beneath Eastern China is characterized by a high water concentration, approximately 0.2 and 1 wt per cent in the upper and lower MTZ, respectively. Owing to the inclusion of more stations, the water-rich region could be constrained roughly to the east of the North–South Gravity Lineament (NSGL). Further considering seismic images in the same area, this water content distribution pattern suggested that the front of the stagnant Pacific Plate in the lower MTZ might have reached the NSGL. However, the dehydration reactions in the stagnant slab were more active in the eastern part. Perhaps, some of these fluids migrated into the upper MTZ and could be the source of the trapped water found in the xenoliths from the deep upper mantle beneath Eastern China.


2014 ◽  
Vol 197 (1) ◽  
pp. 396-413 ◽  
Author(s):  
S. Lessing ◽  
C. Thomas ◽  
S. Rost ◽  
L. Cobden ◽  
D. P. Dobson

2020 ◽  
Vol 21 (12) ◽  
Author(s):  
Yiming Bai ◽  
Xiaohui Yuan ◽  
Yumei He ◽  
Guangbing Hou ◽  
Myo Thant ◽  
...  

Geology ◽  
2019 ◽  
Vol 48 (2) ◽  
pp. 200-204
Author(s):  
Youqiang Yu ◽  
Stephen S. Gao ◽  
Kelly H. Liu ◽  
Dapeng Zhao

Abstract The diverse range of active tectonics occurring in southern California, USA, offers an opportunity to explore processes of continental deformation and modification in response to the instability of the Pacific and Farallon plates. Here, we present a high-resolution receiver-function image of the mantle transition zone (MTZ). Our result reveals significant lateral heterogeneities in the deep mantle beneath southern California. Both seismic tomography and MTZ discontinuity deflections reveal foundered lithospheric segments that have dropped into the MTZ beneath the western Transverse Ranges, the Peninsular Ranges, and part of the southern Sierra Nevada. Water dehydrated from these foundered materials may contribute to the observed MTZ thickening. Our observations, combined with previous tomography and geochemical results, indicate that lithospheric foundering of fossil arc roots provides a way for geochemical heterogeneities to be recycled into the underlying mantle, and suggest that the foundered materials can play a significant role in inducing lateral variations of MTZ structure.


Sign in / Sign up

Export Citation Format

Share Document