Stress Drops and Directivity of Induced Earthquakes in the Western Canada Sedimentary Basin

2019 ◽  
Vol 109 (5) ◽  
pp. 1635-1652 ◽  
Author(s):  
Joanna M. Holmgren ◽  
Gail M. Atkinson ◽  
Hadi Ghofrani

Abstract The Western Canada sedimentary basin (WCSB) has experienced an increase in seismicity during the last decade due primarily to hydraulic fracturing. Understanding the ground motions of these induced earthquakes is critical to characterize the increase in hazard. Stress drop is considered an important parameter in this context because it is a measure of the high‐frequency content of the shaking. We use the empirical Green’s function (EGF) method to determine S‐wave corner frequencies and stress drops of 87 earthquakes of moment magnitude (M) 2.3–4.4 in the WCSB. The EGF method is an effective technique to isolate earthquake source effects by dividing out the path and site components in the frequency domain, using a smaller collocated earthquake as an EGF. The corner frequency of the target event is determined for an assumed spectral ratio shape, from which the stress drop is computed. Assuming a fixed velocity, we find that the average stress drop for induced earthquakes in the WCSB for small‐to‐moderate events is 7.5±0.5  MPa, with a total range from 0.2 to 370 MPa. However, because of the dependence of stress drop on model conventions and constants, we consider the absolute stress‐drop value meaningful only for comparison with other results using the same underlying models. By contrast, corner frequency is a less‐ambiguous variable with which to characterize the source spectrum. The range of corner frequencies obtained in this study for events of M 4.0±0.5 is 1.1–5.8 Hz. Significant rupture directivity is observed for more than one‐third of the earthquakes, with station corner frequencies varying by about a factor of 4 with azimuth. This emphasizes the importance of having suitable station coverage to determine source parameters. We model directivity where evident using a Haskell source model and find that the rupture azimuths are primarily oriented approximately north–south throughout the region.

Author(s):  
Seong Ju Jeong ◽  
Brian W. Stump ◽  
Heather R. DeShon ◽  
Louis Quinones

ABSTRACT Earthquakes in the Fort Worth basin (FWB) have been induced by the disposal of recovered wastewater associated with extraction of unconventional gas since 2008. Four of the larger felt earthquakes, each on different faults, prompted deployment of local distance seismic stations and recordings from these four sequences are used to estimate the kinematic source characteristics. Source spectra and the associated source parameters, including corner frequency, seismic moment, and stress drop, are estimated using a modified generalized inversion technique (GIT). As an assessment of the validity of the modified GIT approach, corner frequencies and stress drops from the GIT are compared to estimates using the traditional empirical Green’s function (EGF) method for 14 target events. For these events, corner-frequency residuals (GIT−EGF) have a mean of −0.31 Hz, with a standard deviation of 1.30 Hz. We find consistent mean stress drops using the GIT and EGF methods, 9.56 and 11.50 MPa, respectively, for the common set of target events. The GIT mean stress drop for all 79 earthquakes is 5.33 MPa, similar to estimates for global intraplate earthquakes (1–10 MPa) as well as other estimates for induced earthquakes near the study area (1.7–9.5 MPa). Stress drops exhibit no spatial or temporal correlations or depth dependency. In addition, there are no time or space correlations between estimated FWB stress drops and modeled pore-pressure perturbations. We conclude that induced earthquakes in the FWB occurring on normal faults in the crystalline basement release pre-existing tectonic stresses and that stress drops on the four sequences targeted in this study do not directly reflect perturbations in pore-fluid pressure on the fault.


2020 ◽  
Vol 110 (5) ◽  
pp. 2398-2410 ◽  
Author(s):  
Joanna M. Holmgren ◽  
Gail M. Atkinson ◽  
Hadi Ghofrani

ABSTRACT A regional ground-motion prediction equation (GMPE) is defined for earthquakes in the western Canada sedimentary basin. The stress parameter model that is input to the GMPE, which controls high-frequency amplitudes, is developed based on an empirical Green’s function (EGF) study in the same region (Holmgren et al., 2019). The GMPE is developed using the generic GMPE approach of Yenier and Atkinson (2015a,b); regional parameters, including attenuation and site response, are calibrated using a database of response spectra. The ground-motion database comprises 726 records from 92 earthquakes with magnitudes 2.3–4.4, at distances to 200 km; most events are believed to be related to hydraulic fracturing. To investigate discrepancies between the values of GMPE stress parameter and EGF stress drop for individual earthquakes, stress parameters are computed for each event by fitting the GMPE to observed response spectra. There is a large scatter in the EGF versus GMPE stress estimates, even though the GMPE estimates were implicitly calibrated to equal the EGF values on average. The discrepancies can be attributed to two methodological factors. First, the EGF approach removes the site and path terms through spectral division, whereas the GMPE approach relies on an average regional model as determined from regression of the source and path attenuation. The use of an average regional model results in greater uncertainty, in particular, due to directivity effects (which are better accommodated in the EGF approach). Second, the EGF approach is performed in the Fourier domain, whereas the GMPE fitting is done in the response spectral domain. We conclude that EGF stress-drop models provide useful constraints for GMPE development, when used in combination with calibration to a ground-motion database.


2016 ◽  
Vol 87 (3) ◽  
pp. 631-647 ◽  
Author(s):  
Gail M. Atkinson ◽  
David W. Eaton ◽  
Hadi Ghofrani ◽  
Dan Walker ◽  
Burns Cheadle ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document