fort worth basin
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 23)

H-INDEX

23
(FIVE YEARS 2)

AAPG Bulletin ◽  
2021 ◽  
Vol 105 (9) ◽  
pp. 2575-2593
Author(s):  
Shuang Gao ◽  
Jean-Philippe Nicot ◽  
Peter H. Hennings ◽  
Paul La Pointe ◽  
Katie M. Smye ◽  
...  

Geosphere ◽  
2021 ◽  
Author(s):  
William A. Thomas ◽  
George E. Gehrels ◽  
Kurt E. Sundell ◽  
Mariah C. Romero

New analyses for U-Pb ages and εHft values, along with previously published U-Pb ages, from Mississippian–Permian sandstones in synorogenic clastic wedges of the Ouachita foreland and nearby intracratonic basins support new interpretations of provenance and sediment dispersal along the southern Midcontinent of North America. Recently published U-Pb and Hf data from the Marathon foreland confirm a provenance in the accreted Coahuila terrane, which has distinctive Amazonia/Gondwana characteristics. Data from Pennsylvanian–Permian sandstones in the Fort Worth basin, along the southern arm of the Ouachita thrust belt, are nearly identical to those from the Marathon foreland, strongly indicating the same or a similar provenance. The accreted Sabine terrane, which is documented by geophysical data, is in close proximity to the Coahuila terrane, suggesting the two are parts of an originally larger Gondwanan terrane. The available data suggest that the Sabine terrane is a Gondwanan terrane that was the provenance of the detritus in the Fort Worth basin. Detrital-zircon data from Permian sandstones in the intracratonic Anadarko basin are very similar to those from the Fort Worth basin and Marathon foreland, indicating sediment dispersal from the Coahuila and/or Sabine terranes within the Ouachita orogen cratonward from the immediate forelands onto the southern craton. Similar, previously published data from the Permian basin suggest widespread distribution from the Ouachita orogen. In contrast to the other basins along the Ouachita-Marathon foreland, the Mississippian–Pennsylvanian sandstones in the Arkoma basin contain a more diverse distribution of detrital-zircon ages, indicating mixed dispersal pathways of sediment from multiple provenances. Some of the Arkoma sandstones have U-Pb age dis­tributions like those of the Fort Worth and Marathon forelands. In contrast, other sandstones, especially those with paleocurrent and paleogeographic indicators of southward progradation of deposi­tional systems onto the northern distal shelf of the Arkoma basin, have U-Pb age distributions and εHft values like those of the “Appalachian signature.” The combined data suggest a mixture of detritus from the proximal Sabine terrane/Ouachita orogenic belt with detritus routed through the Appalachian basin via the southern Illinois basin to the distal Arkoma basin. The Arkoma basin evidently marks the southwestern extent of Appalachian-derived detritus along the Ouachita-Marathon foreland and the transition southwestward to overfilled basins that spread detritus onto the southern craton from the Ouachita-Marathon orogen, including accreted Gondwanan terranes.


2021 ◽  
Author(s):  
E. A. Horne ◽  
◽  
K. M. Smye ◽  
P. H. Hennings
Keyword(s):  

Author(s):  
Seong Ju Jeong ◽  
Brian W. Stump ◽  
Heather R. DeShon ◽  
Louis Quinones

ABSTRACT Earthquakes in the Fort Worth basin (FWB) have been induced by the disposal of recovered wastewater associated with extraction of unconventional gas since 2008. Four of the larger felt earthquakes, each on different faults, prompted deployment of local distance seismic stations and recordings from these four sequences are used to estimate the kinematic source characteristics. Source spectra and the associated source parameters, including corner frequency, seismic moment, and stress drop, are estimated using a modified generalized inversion technique (GIT). As an assessment of the validity of the modified GIT approach, corner frequencies and stress drops from the GIT are compared to estimates using the traditional empirical Green’s function (EGF) method for 14 target events. For these events, corner-frequency residuals (GIT−EGF) have a mean of −0.31 Hz, with a standard deviation of 1.30 Hz. We find consistent mean stress drops using the GIT and EGF methods, 9.56 and 11.50 MPa, respectively, for the common set of target events. The GIT mean stress drop for all 79 earthquakes is 5.33 MPa, similar to estimates for global intraplate earthquakes (1–10 MPa) as well as other estimates for induced earthquakes near the study area (1.7–9.5 MPa). Stress drops exhibit no spatial or temporal correlations or depth dependency. In addition, there are no time or space correlations between estimated FWB stress drops and modeled pore-pressure perturbations. We conclude that induced earthquakes in the FWB occurring on normal faults in the crystalline basement release pre-existing tectonic stresses and that stress drops on the four sequences targeted in this study do not directly reflect perturbations in pore-fluid pressure on the fault.


2020 ◽  
Author(s):  
Bing Q. Li ◽  
Jean-Philippe Avouac ◽  
Zachary E. Ross ◽  
Jing Du ◽  
Estelle Rebel

2020 ◽  
Vol 8 (4) ◽  
pp. T687-T699
Author(s):  
Swetal Patel ◽  
Francis Oyebanji ◽  
Kurt J. Marfurt

Because of their improved leverage against ground roll and multiples, as well as the ability to estimate azimuthal anisotropy, wide-azimuth 3D seismic surveys routinely now are acquired over most resource plays. For a relatively shallow target, most of these surveys can be considered to be long offset as well, containing incident angles up to 45°. Unfortunately, effective use of the far-offset data often is compromised by noise and normal moveout (NMO) (or, more accurately, prestack migration) stretch. The conventional NMO correction is well-known to decrease the frequency content and distort the seismic wavelet at far offsets, sometimes giving rise to tuning effects. Most quantitative interpreters work with prestack migrated gathers rather than unmigrated NMO-corrected gathers. However, prestack migration of flat reflectors suffers from the same limitation called migration stretch. Migration stretch leads to lower S-impedance ([Formula: see text]) and density ([Formula: see text]) resolution estimated from inversion, misclassification of amplitude variation with offset (AVO) types, and infidelity in amplitude variation with azimuth (AVAZ) inversion results. We have developed a matching pursuit algorithm commonly used in spectral decomposition to correct the migration stretch by scaling the stretched wavelets using a wavelet compensation factor. The method is based on hyperbolic moveout approximation. The corrected gathers show increased resolution and higher fidelity amplitudes at the far offsets leading to improvement in AVO classification. Correction for migration stretch rather than conventional “stretch-mute” corrections provides three advantages: (1) preservation of far angles required for accurate [Formula: see text] inversion, (2) improvement in the vertical resolution of [Formula: see text] and [Formula: see text] volumes, and (3) preservation of far angles that provide greater leverage against multiples. We apply our workflow to data acquired in the Fort Worth Basin and retain incident angles up to 42° at the Barnett Shale target. Comparing [Formula: see text], [Formula: see text], and [Formula: see text] of the original gather and migration stretch-compensated data, we find an insignificant improvement in [Formula: see text], but a moderate to significant improvement in resolution of [Formula: see text] and [Formula: see text]. The method is valid for reservoirs that exhibit a dip of no more than 2°. Consistent improvement is observed in resolving thick beds, but the method might introduce amplitude anomalies at far offsets for tuning beds.


2020 ◽  
Vol 110 (5) ◽  
pp. 2058-2076 ◽  
Author(s):  
SeongJu Jeong ◽  
Brian W. Stump ◽  
Heather R. DeShon

ABSTRACT A generalized inversion technique (GIT) is applied to local seismic data from 90 induced earthquakes (ML 2.0–3.9) in the Fort Worth Basin (FWB) of north Texas to separate path, site, and source characteristics and to improve local seismic hazard assessment. Seismograms from three earthquake sequences on spatially separated basement faults are recorded on 66 temporary stations. Because of the lack of hard-rock recording sites within the sedimentary basin, we developed a site correction method for the appropriate GIT process. At about 30 km distance from the hypocenters, we observed a change in spectral attenuation and thus focus data analysis within this distance range. The estimated quality factors for S and P waves result in a QS that is larger than QP which we interpret as a result of concentrations of crustal pore fluids or partial fluid-saturated material along the path; an interpretation consistent with fluid-rich sedimentary rocks in the FWB. Strong site amplifications as much as five times on horizontal components reflect the thick sediments in the basin. A limited number of sites exhibit amplification or deamplification on the vertical component that limits the use of horizontal-to-vertical spectral ratio methods for characterizing the site effect relative to the site effects estimated by GIT. Stress drops for all earthquakes range from 1.18 and 21.73 MPa with a mean of 4.46 MPa, similar to values reported for tectonic intraplate events. The stress-drop values suggest that strong motion and seismic hazard from the injection-induced earthquake in the FWB are comparable to those for tectonic earthquakes. The strong site amplification and fluid effects on propagation attenuation may be crucial factors to take into account for estimating seismic hazards of induced earthquakes in sedimentary basins.


2020 ◽  
Vol 8 (2) ◽  
pp. T323-T347 ◽  
Author(s):  
Elizabeth A. Horne ◽  
Peter H. Hennings ◽  
Johnathon L. Osmond ◽  
Heather R. DeShon

From 2006 through mid-2018, there have been 125 [Formula: see text] recorded earthquakes within the Fort Worth Basin and the Dallas-Fort Worth metropolitan area. There is general scientific consensus that this increase in seismicity has been induced by increases in pore-fluid pressure from wastewater injection and from cross-fault pore-pressure imbalance due to injection and production. Previous fault stress analyses indicate that many of the faults are critically stressed; therefore, careful consideration should be taken when injecting in close proximity to these structures. Understanding the structural characteristics that control geomechanical aspects of these earthquake-prone faults is vital in characterizing this known hazard. To improve understanding of faults in the system, we have developed a characterization using a new basin-wide fault interpretation and database that has been assembled through the integration of published data, 2D and 3D seismic surveys, outcrop mapping, earthquakes, and interpretations provided by operators resulting in a 3D structural framework of basement-rooting faults. Our results show that a primary fault system trends northeast–southwest, creating a system of elongate horsts and grabens. Fault architectures range from isolated faults to linked and cross-cutting relay systems with individual segments ranging in length from 0.5 to 80 km. The faults that have hosted earthquakes are generally less than 10 km long, trend toward the northeast, and exhibit more than 50 m of normal displacement. The intensity of faulting decreases to the west away from the Ouachita structural front. Statistical analysis of the fault length, spacing, throw, and linkage tendency enables a more complete characterization of faults in the basin, which can be used to mitigate the seismic hazard. Finally, we find that a significant percentage of the total population of faults may be susceptible to reactivation and seismicity as those that have slipped recently.


2020 ◽  
Vol 39 (4) ◽  
pp. 291-291

The March 2020 TLE article by Alexandrov et al., “Normal faulting activated by hydraulic fracturing: A case study from the Barnett Shale, Fort Worth Basin,” contained an error in the third author's affiliation and e-mail address. Umair bin Waheed's correct affiliation is King Fahd University of Petroleum and Minerals, and the correct e-mail address for the author is [email protected] .


Sign in / Sign up

Export Citation Format

Share Document