Surface-Wave Tomography of Eastern and Central Tibet from Two-Plane-Wave Inversion: Rayleigh-Wave and Love-Wave Phase Velocity Maps

2020 ◽  
Vol 110 (3) ◽  
pp. 1359-1371
Author(s):  
Lun Li ◽  
Yuanyuan V. Fu

ABSTRACT An understanding of mantle dynamics occurring beneath the Tibetan plateau requires a detailed image of its seismic velocity and anisotropic structure. Surface waves at long periods (>50  s) could provide such critical information. Though Rayleigh-wave phase velocity maps have been constructed in the Tibetan regions using ambient-noise tomography (ANT) and regional earthquake surface-wave tomography, Love-wave phase velocity maps, especially those at longer periods (>50  s), are rare. In this study, two-plane-wave teleseismic surface-wave tomography is applied to develop 2D Rayleigh-wave and Love-wave phase velocity maps at periods between 20 and 143 s across eastern and central Tibet and its surroundings using four temporary broadband seismic experiments. These phase velocity maps share similar patterns and show high consistency with those previously obtained from ANT at overlapping periods (20–50 s), whereas our phase velocity maps carry useful information at longer periods (50–143 s). Prominent slow velocity is imaged at periods of 20–143 s beneath the interior of the Tibetan plateau (i.e., the Songpan–Ganzi terrane, the Qiangtang terrane, and the Lhasa terrane), implying the existence of thick Tibetan crust along with warm and weak Tibetan lithosphere. In contrast, the dispersal of fast velocity anomalies coincides with mechanically strong, cold tectonic blocks, such as the Sichuan basin and the Qaidam basin. These phase velocity maps could be used to construct 3D shear-wave velocity and radial seismic anisotropy models of the crust and upper mantle down to 250 km across the eastern and central Tibetan plateau.

2021 ◽  
Vol 14 (1) ◽  
pp. 110
Author(s):  
Xiaoming Xu ◽  
Dazhou Zhang ◽  
Xiang Huang ◽  
Xiaoman Cao

The North China Craton (NCC) has experienced strong tectonic deformation and lithospheric thinning since the Cenozoic. To better constrain the geodynamic processes and mechanisms of the lithospheric deformation, we used a linear damped least squares method to invert simultaneously Rayleigh wave phase velocity and azimuthal anisotropy at periods of 10–80 s with teleseismic data recorded by 388 permanent stations in the NCC and its adjacent areas. The results reveal that the anomalies of Rayleigh wave phase velocity and azimuthal anisotropy are in good agreement with the tectonic domains in the study area. Low-phase velocities appear in the rift grabens and sedimentary basins at short periods. A rotation pattern of the fast axis direction of the Rayleigh wave together with a distinct low-velocity anomaly occurs around the Datong volcano. A NW–SE trending azimuthal anisotropy and a low-velocity anomaly at periods of 60–80 s are observed subparallel to the Zhangbo fault zone. The whole lithosphere domain of the Ordos block shows a high-phase velocity and counterclockwise rotated fast axis. The northeastern margin of the Tibetan plateau is dominated by a low-velocity and coherent NW–SE fast axis direction. We infer that the subduction of the Paleo-Pacific plate and eastward material escape of the Tibetan plateau mainly contribute to the deformation of the crust and upper mantle in the NCC.


2020 ◽  
Author(s):  
Petr Kolínský ◽  
Tena Belinić ◽  
Josip Stipčević ◽  
Irene Bianchi ◽  
Florian Fuchs ◽  
...  

<p>The Alpine-Dinarides are a complex orogenic system, with its tectonic evolution controlled by the ongoing convergence between Eurasian and African plates with the Adriatic microplate wedged between them. Our study focuses on the upper mantle of the wider Alpine-Dinarides region, and we present surface-wave tomography of two overlapping subregions, interpreting the seismic velocity features in the context of regional geodynamics.</p><p>In the first part, we use records of 151 teleseismic earthquakes (2010-2018) at 98 stations distributed across the wider Dinarides region. Surface-wave phase velocities are measured in the range of 30 – 160 s by the two-station method at pairs of stations aligned along the great circle paths with the epicenters. We apply several data-quality tests before the dispersion curves are measured. We use Rayleigh waves recorded on both radial and vertical components. Only the dispersions measured coherently at both components are used for the tomography. In total, we reach the number of 9000 phase velocity measurements for the period of 50 s. Tomographic results including resolution estimates are provided for various frequencies; the local dispersion curves are inverted for depths from the surface down to 300 km. Results are shown as maps for various depths and as cross-sections along several profiles of shear-wave velocities in the whole region.</p><p>The other study focuses on the Alps. The AlpArray seismic network stretches hundreds of kilometers in width and more than thousand kilometers in length. It is distributed over the greater Alpine region (Europe) and consists of around 250 temporary and around 400 permanent broadband stations with interstation distances around 40 km. The earthquakes are selected between years 2016-2019. The methodology differs from the Dinarides case in a sense, that while before we used many earthquakes and less stations pairs (due to sparser station coverage), for the Alps, we use less earthquakes (32) and many more stations pairs (tens of thousands) making use of the dense station coverage of the AlpArray network.</p><p>Results of the depth inversion of the local dispersion measurements for the Alps are compared with local surface-wave phase-velocity measurement obtained from the (sub)array approach.</p>


2006 ◽  
Vol 33 (18) ◽  
pp. n/a-n/a ◽  
Author(s):  
Hidetaka Shiraishi ◽  
Tatsuro Matsuoka ◽  
Hiroshi Asanuma

Sign in / Sign up

Export Citation Format

Share Document