Seismic Response of 2D Topographic Profiles for Incident SH Waves: Iterative Solution and Comparison of Direct and Indirect BEM

Author(s):  
Jimena Mejía-López ◽  
Oscar I. López-Sugahara ◽  
José Piña-Flores ◽  
Francisco J. Sánchez-Sesma ◽  
Zengxi Ge ◽  
...  

ABSTRACT The scattering and diffraction of waves by irregular surface profiles is of interest in seismology and in many other areas. Diverse techniques have been proposed to quantitatively study the problem. Among them, domain approaches such as finite differences, spectral elements and finite elements have been used. Because the reduction of dimensionality boundary formulations is widely used. Recently, the direct boundary-element method has been applied using some series approximations for surface scattering, including the preconditioned splitting series, for the numerical description of rough surface scattering. Extending further and simplifying this approach, we use the indirect boundary-element method. The ensuing Fredholm integral equation of the second kind that arises in IBEM leads to a very efficient iterative scheme based on the classical Jacobi method. A discussion of direct and indirect approaches is presented. Assuming incident SH waves, results are obtained with the various approaches and compared among them for both a canyon and a hill, both of semicircular shape. Besides, an example is presented of a surface profile that produces strong scattering. This was inspired by the diverse problems that arise in the emerging field of metamaterials.

2010 ◽  
Vol 439-440 ◽  
pp. 692-697
Author(s):  
Li Jun Li ◽  
Xian Yue Gang ◽  
Hong Yan Li ◽  
Shan Chai ◽  
Ying Zi Xu

For acoustic radiation of open thin-walled structure, it was difficult to analyze directly by analytical method. The problem could be solved by several numerical methods. This paper had studied the basic theory of the numerical methods as FEM (Finite Element Method), BEM (Boundary Element Method) and IFEM (Infinite Element Method), and the numerical methods to solve open structure radiation problem. Under the premise of structure-acoustic coupling, this paper analyzed the theory and flow of the methods on acoustic radiation of open structure, including IBEM (Indirect Boundary Element Method), DBEM (Direct Boundary Element Method) coupling method of interior field and exterior field, FEM and BEM coupling method, FEM and IFEM coupling method. This paper took the open structure as practical example, and applied the several methods to analyze it, and analyzed and compared the several results to get relevant conclusions.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1426
Author(s):  
Federico Moro ◽  
Lorenzo Codecasa

A unified discretization framework, based on the concept of augmented dual grids, is proposed for devising hybrid formulations which combine the Cell Method and the Boundary Element Method for static and quasi-static electromagnetic field problems. It is shown that hybrid approaches, already proposed in literature, can be rigorously formulated within this framework. As a main outcome, a novel direct hybrid approach amenable to iterative solution is derived. Both direct and indirect hybrid approaches, applied to an axisymmetric model, are compared with a reference third-order 2D FEM solution. The effectiveness of the indirect approach, equivalent to the direct approach, is finally tested on a fully 3D benchmark with more complex topology.


Sign in / Sign up

Export Citation Format

Share Document