linear element
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 6)

H-INDEX

12
(FIVE YEARS 1)

2022 ◽  
Author(s):  
Yu-Chien Chuang ◽  
Gerald R. Smith

Appropriate DNA double-strand-break (DSB) and crossover distributions are required for proper meiotic chromosome segregation. Schizosaccharomyces pombe linear element proteins (LinEs) determine DSB hotspots; LinE-bound hotspots form 3D clusters over ∼200 kb chromosomal regions. Here, we investigated LinE configurations and distributions in live cells using super-resolution fluorescence microscopy. We found LinEs form two chromosomal structures, dot-like and linear structures, in both zygotic and azygotic meiosis. Dot-like LinE structures appeared around the time of meiotic DNA replication, underwent dotty-to-linear-to-dotty configurational transitions, and disassembled before the first meiotic division. DSB formation and repair did not detectably influence LinE structure formation, but failure of DSB formation delayed disassembly. Recombination-deficient LinE missense mutants formed dot-like but not linear LinE structures. Our quantitative study reveals a transient form of LinE structures and suggests a novel role for LinE proteins in regulating meiotic events, such as DSB repair. We discuss the relation of LinEs and the synaptonemal complex in other species.


Author(s):  
Wei Xu ◽  
Cheng Wang ◽  
Mingyan He ◽  
Wenbin Chen ◽  
Weimin Han ◽  
...  

AbstractThis paper is devoted to numerical analysis of doubly-history dependent variational inequalities in contact mechanics. A fully discrete method is introduced for the variational inequalities, in which the doubly-history dependent operator is approximated by repeated left endpoint rule and the spatial variable is approximated by the linear element method. An optimal order error estimate is derived under appropriate solution regularities, and numerical examples illustrate the convergence orders of the method.


Author(s):  
Claudio Lobos ◽  
Cristopher Arenas ◽  
Esteban Daines ◽  
Nancy Hitschfeld

2021 ◽  
Vol 15 ◽  
Author(s):  
Xue Yang ◽  
Yin Lyu ◽  
Yang Sun ◽  
Chen Zhang

At present, part of people's body is in the state of sub-health, and more people pay attention to physical exercise. Dance is a relatively simple and popular activity, it has been widely concerned. The traditional action recognition method is easily affected by the action speed, illumination, occlusion and complex background, which leads to the poor robustness of the recognition results. In order to solve the above problems, an improved residual dense neural network method is used to study the automatic recognition of dance action images. Firstly, based on the residual model, the features of dance action are extracted by using the convolution layer and pooling layer. Then, the exponential linear element (ELU) activation function, batch normalization (BN) and Dropout technology are used to improve and optimize the model to mitigate the gradient disappearance, prevent over-fitting, accelerate convergence and enhance the model generalization ability. Finally, the dense connection network (DenseNet) is introduced to make the extracted dance action features more rich and effective. Comparison experiments are carried out on two public databases and one self-built database. The results show that the recognition rate of the proposed method on three databases are 99.98, 97.95, and 0.97.96%, respectively. It can be seen that this new method can effectively improve the performance of dance action recognition.


2020 ◽  
pp. 61-70
Author(s):  
O. Sinyavsky ◽  
◽  
V. Kisten ◽  
N. Solomko ◽  
◽  
...  

Currently, nonlinear pulse automatic control systems have become widespread, so there is a need to develop methods for their study. Pulse regulators are created on the basis of positional with the addition of pulse breakers. They can be represented as a non-linear element, a simple impulse element and a forming circle connected in series. The aim of the study was to determine the optimal parameters for setting up a relay-pulse controller for an astatic object with a delay. When determining the parameters of adjustment of the relay-pulse regulator for the quality indicator in the optimization of the automatic control system was taken as the total square deviation. Applying this criterion, the pulse duration of the regulator was determined. The time quantization interval is determined from the condition of ensuring the absolute stability of the automatic control system. Analytical dependences were obtained to determine the pulse duration and time quantization interval, which make it possible to determine the debugging parameters of the relay-pulse controller for a first-order astatic object with a delay. This ensures a minimum control error, and the control system is stable.


2017 ◽  
Vol 152 ◽  
pp. 61-70 ◽  
Author(s):  
L. Merabet ◽  
S. Saad ◽  
D. Ould Abdeslam ◽  
J. Merckle

2017 ◽  
Vol 26 (12) ◽  
pp. 1750189 ◽  
Author(s):  
Bibha Kumari ◽  
Nisha Gupta

This paper presents the design of novel autonomous and non-autonomous inductorless chaotic circuit using lambda diode. The autonomous chaotic circuit is implemented using Chua’s circuit, where the piece-wise linear element of Chua’s circuit called Chua’s diode is replaced by lambda diode. The lambda diode used as a nonlinear resistor in Chua’s circuit comprises of BJT, FET and resistors. The non-autonomous chaotic circuit is studied by replacing the piece-wise linear element of Murali–Lakshmana–Chua (MLC) circuit by lambda diode. The reason for employing lambda diode is that it has a wide range of negative resistance characteristics, which enable the circuit to operate at higher frequency ranges. The resulting chaotic oscillator can easily be made to operate at both low and high frequencies. The chaotic behavior of the circuit is established through Multisim simulations in the time and frequency domains. Both theoretical analysis and electronic circuit experiments are presented. The circuit’s chaotic characteristics are further confirmed by means of Poincare plot and the Bifurcation diagram. The observed route to chaos is period-adding.


Sign in / Sign up

Export Citation Format

Share Document