HEX: Hyperbolic Event eXtractor, a Seismic Phase Associator for Highly Active Seismic Regions

2020 ◽  
Vol 91 (5) ◽  
pp. 2769-2778 ◽  
Author(s):  
Jack Woollam ◽  
Andreas Rietbrock ◽  
Jens Leitloff ◽  
Stefan Hinz

Abstract The task of seismic phase association is to correlate the onsets of radiated seismic energy with an underlying source. Commonly applied within seismic monitoring networks for event detection, it forms a vital component of many seismic processing pipelines. With the complexity of this task naturally increasing with the number of phases to simultaneously correlate, rapid advancements in the number of sensors per seismic deployment, along with improved picking algorithms have greatly increased the volume of phases now recorded across seismic networks. Although traditional phase association methods work well for historic catalogs, they become unreliable when tasked with associating the frequent smaller events recorded in the latest seismic datasets. Accurately correlating such events is crucial if seismologists are to better understand the underlying physical processes. The phase association problem is, therefore, being revisited with novel techniques now being applied to improve performance. We present a new technique for associating seismic phases, Hyperbolic Event eXtractor (HEX). HEX adapts the logic of Random Sample Consensus, a model estimation approach widely used in the computer vision community and specifically designed to deal with high proportions of noise in the data distribution. We demonstrate the performance of HEX in associating phases over a synthetic dataset for a regional seismic network in northern Chile. Synthetic testing reveals that HEX can correlate seismic phases when events have up to a ∼15  s average spacing.

2018 ◽  
Vol 214 (2) ◽  
pp. 990-1003
Author(s):  
Raúl R Castro ◽  
Antonio Mendoza-Camberos ◽  
Arturo Pérez-Vertti

Author(s):  
A. Malovichko ◽  
N. Petrova ◽  
I. Gabsatarova ◽  
R. Mikhailova ◽  
V. Levina ◽  
...  

The review of the Northern Eurasia seismicity for 2015 includes a description of seismic networks, the results of analysis of the seismic regime and individual noticeable earthquakes in 16 regions of Russia and neighbouring countries. Seismic monitoring was carried out by the networks of seismic station of Russia, Azerbaijan, Armenia, Belarus, Kazakhstan, Kyrgyzstan, Latvia, Moldova, Turkmenistan, Tajikistan, Uzbekistan, Ukraine, including 599 digital, 7 analogue stations and eight seismic groups. In 2015, these networks registered about 27 thousand tectonic earthquakes, over 6 thousand volcanic earthquakes, 599 explosions, 23 mountain-tectonic shocks and induced earthquakes. Focal mechanisms of 592 earthquakes were determined, the information on manifestations of 449 perceptible earthquakes was collected. 26 shocks were felt in settlements of Northern Eurasia with an intensity Ii≥5. According to estimates of the annual number and released seismic energy in 2015 in comparison with the long-term characteristics of the seismic regime, the seismic process in most regions of Northern Eurasia proceeded in the “background” regime. An exception is Tajikistan and adjacent territories, where two strong earthquakes occurred – the Hindu Kush earthquake on October 26 with Mw=7.5, h=230 km in northern Afghanistan, near the border with Tajikistan, and the Sarez earthquake on December 7 with Mw=7.2, Ms=7.6, h=20 km in Tajikistan. Both earthquakes were accompanied by numerous aftershocks and were felt in Tajikistan with intensities Imax=7 and Imax=7–8 respectively, on the MSK-64 scale. Notable event on the territory of Northern Eurasia in 2015 is the emergence of the Muyakan sequence of earthquakes, the largest for the period of instrumental observations in the region "Baikal and Transbaikalia", as a result of which the number of recorded earthquakes in the region quadrupled concerning 2014. The other interesting fact is occurrence of tangible earthquakes in the regions, traditionally considered weakly seismic – near the Semipalatinsk test area in Eastern Kazakhstan (Chingiz earthquake on January 20, Ms=4.1, I0=5–6), in the Middle Urals (Middle Ural earthquake on October 18 with ML=4.7, I0=6) and in the southwest of East -European platform (Poltava earthquake on February 3 with KR=10.7, I0=6).


2020 ◽  
Vol 204 ◽  
pp. 104591
Author(s):  
Ting-Li Lin ◽  
Himanshu Mittal ◽  
Cheng-Feng Wu ◽  
Yun-Hsuan Huang

1987 ◽  
Vol 24 (8) ◽  
pp. 1727-1733 ◽  
Author(s):  
Cecilio J. Rebollar ◽  
Rosa M. Alvarez

Brune's stress drop, apparent stress, and arms stress drop are estimated at a single station for 25 aftershocks of the Ometepec earthquakes (Ms = 6.9 and Ms = 7.0). The arms stress drops and apparent stresses are systematically smaller than Brune's stress drops. Stress drops from the root mean square of acceleration and apparent stress range from 0.01 to 10.2 bars (1 bar = 100 kPa) except for two values (21.4 and 33.0 bars). On the other hand, Brune's stress drops range from 0.6 to 239 bars. Seismic moments ranging from 0.5 × 1019 to 289 × 1019 dyn∙cm (1 dyn∙cm = 10 μN∙cm) were estimated for events with coda magnitudes between 0.6 and 2.2. Values of radiated seismic energy calculated by integration of the displacement spectra range from 2.5 × 1012 to 2.3 × 1016 dyn∙cm. The fmax values lie between 16 and 30 Hz. Seismic coda wave attenuation measured on narrow band-pass-filtered seismograms show a linear dependence of the seismic quality factor of the form [Formula: see text] in the range of frequencies from 3 to 24 Hz.


Sign in / Sign up

Export Citation Format

Share Document