Radiation of seisimic surface waves from extending circular sources

1970 ◽  
Vol 60 (2) ◽  
pp. 517-537
Author(s):  
Marie Horn

abstract The radiation of Rayleigh and Love waves from two different horizontal circular sources of stress is studied. The displacement on the free surface is deduced from the equations of motion and boundary conditions and then integrated over a finite radius to simulate a disturbance extending with a constant finite velocity.

1964 ◽  
Vol 54 (2) ◽  
pp. 627-679
Author(s):  
David G. Harkrider

ABSTRACT A matrix formulation is used to derive integral expressions for the time transformed displacement fields produced by simple sources at any depth in a multilayered elastic isotropic solid half-space. The integrals are evaluated for their residue contribution to obtain surface wave displacements in the frequency domain. The solutions are then generalized to include the effect of a surface liquid layer. The theory includes the effect of layering and source depth for the following: (1) Rayleigh waves from an explosive source, (2) Rayleigh waves from a vertical point force, (3) Rayleigh and Love waves from a vertical strike slip fault model. The latter source also includes the effect of fault dimensions and rupture velocity. From these results we are able to show certain reciprocity relations for surface waves which had been previously proved for the total displacement field. The theory presented here lays the ground work for later papers in which theoretical seismograms are compared with observations in both the time and frequency domain.


2013 ◽  
Vol 22 (5-6) ◽  
pp. 185-191 ◽  
Author(s):  
Munish Sethi ◽  
K.C. Gupta ◽  
Monika Rani ◽  
A. Vasudeva

AbstractThe aim of the present paper is to investigate the surface waves in a homogeneous, isotropic, visco-elastic solid medium of nth order, including time rate of strain under the influence of surface stresses. The theory of generalized surface waves is developed to investigate particular cases of waves such as the Stoneley, Rayleigh, and Love waves. Corresponding equations have been obtained for different cases. These are reduced to classical results, when the effects of surface stresses and viscosity are ignored.


1959 ◽  
Vol 49 (1) ◽  
pp. 57-77
Author(s):  
Yasuo Satô

Abstract The calculation of surface-wave dispersion is difficult when the waves propagate in media whose physical properties change with depth, and only a few solutions are available for fairly simple cases. These computations may now be performed with the aid of high-speed computers, even for media whose material constants change arbitrarily with depth. The dispersion of both Love waves and Rayleigh waves has been obtained for such cases by the numerical specification of surface displacement followed by numerical solution of the equations of motion. For example, with respect to the problem of Love waves, besides the ordinary boundary condition that the stress vanishes at the free surface, an extra condition is stated which requires that the displacement amplitude be unity at the surface. The equation of motion is then solved numerically for tentative values of frequency and wave number, and this solution produces the distribution of displacement amplitude in the half space. For all combinations of frequency and wave number which are not solutions, the values of computed displacement do not converge and tend to become positively or negatively infinite for increasing depth below the free surface. To obtain a solution, one of the parameters—for instance, wave number—is fixed, and frequency is varied in small steps until the computed displacement converges to zero at great depths. This combination of parameters fulfills all the standard boundary conditions and is the required solution. The problem of sound waves in an elastic liquid can also be solved with only a minor change in the physical properties. The dispersion of Rayleigh waves propagating in a heterogeneous substance can also be obtained by a similar method. In this case, another parameter is needed, namely, the ratio of the amplitude of horizontal and vertical components of displacement at the free surface. Denote this quantity by a, and the phase velocity by c. Wave number is fixed, and a two-dimensional search in the a-c plane is used to locate the point that produces a convergent solution. For limited media a solution is required which satisfies the boundary conditions at the other surface. Love waves in a medium with constant density and linearly increasing rigidity. Sound waves in a medium whose density and velocity are given by experimental curves. Rayleigh waves in a medium having constant density and equal rates of increase for λ and μ. Using an IBM “650,” it takes a few minutes to get a point for cases 1 and 2, and from thirty minutes to two hours per point for Rayleigh-wave dispersion.


1998 ◽  
Vol 42 (01) ◽  
pp. 1-8 ◽  
Author(s):  
G. X. Wu

The hydrodynamic problem of a submerged sphere moving in a channel is analyzed based on the velocity potential theory. The solution is obtained by using the multipole expansion which satisfies the boundary conditions on the free surface, at infinity, and on the sidewalls. Numerical results are obtained for the resistance and lift on the sphere, and for the attraction force by the sidewall. Results are also provided for the free-surface waves generated by the sphere.


Author(s):  
Wenbo Duan ◽  
Ray Kirby

Surface waves have been extensively studied in earthquake seismology. Surface waves are trapped near an infinitely large surface. The displacements decay exponentially with depth. These waves are also named Rayleigh and Love waves. Surface waves are also used for nondestructive testing of surface defects. Similar waves exist in finite width three-dimensional plates. In this case, displacements are no longer constant in the direction perpendicular to the wave propagation plane. Wave energy could still be trapped near the edge of the three-dimensional plate, and hence the term edge waves. These waves are thus different to the two-dimensional Rayleigh and Love waves. This paper presents a numerical model to study dispersion properties of edge waves in plates. A two-dimensional semi-analytical finite element method is developed, and the problem is closed by a perfectly matched layer adjacent to the edge. The numerical model is validated by comparing with available analytical and numerical solutions in the literature. On this basis, higher order edge waves and mode shapes are presented for a three-dimensional plate. The characteristics of the presented edge wave modes could be used in nondestructive testing applications.


2001 ◽  
Vol 449 ◽  
pp. 255-290 ◽  
Author(s):  
M. BROCCHINI ◽  
D. H. PEREGRINE

Strong turbulence at a water–air free surface can lead to splashing and a disconnected surface as in a breaking wave. Averaging to obtain boundary conditions for such flows first requires equations of motion for the two-phase region. These are derived using an integral method, then averaged conservation equations for mass and momentum are obtained along with an equation for the turbulent kinetic energy in which extra work terms appear. These extra terms include both the mean pressure and the mean rate of strain and have similarities to those for a compressible fluid. Boundary conditions appropriate for use with averaged equations in the body of the water are obtained by integrating across the two-phase surface layer.A number of ‘new’ terms arise for which closure expressions must be found for practical use. Our knowledge of the properties of strong turbulence at a free surface is insufficient to make such closures. However, preliminary discussions are given for two simplified cases in order to stimulate further experimental and theoretical studies.Much of the turbulence in a spilling breaker originates from its foot where turbulent water meets undisturbed water. A discussion of averaging at the foot of a breaker gives parameters that may serve to measure the ‘strength’ of a breaker.


Sign in / Sign up

Export Citation Format

Share Document