Seismic ground-response studies in Olympia, Washington, and vicinity

1990 ◽  
Vol 80 (5) ◽  
pp. 1057-1078
Author(s):  
K. W. King ◽  
A. C. Tarr ◽  
D. L. Carver ◽  
R. A. Williams ◽  
D. M. Worley

Abstract Relative seismic ground-response characteristics in the cities of Olympia, Lacey, and Tumwater, Washington, were determined from analysis of instrumentally recorded ground motion induced by blasts at an open-pit coal mine near Centralia, Washington. A ground-response function (GRF), defined as the ratio of Fourier spectral amplitudes at an alluvium site to spectral amplitudes on hard rock, is a measure of amplification of seismic waves by localized site conditions. GRF values in three frequency bands (0.5 to 1.0 Hz, 1.0 to 2.0 Hz, and 2.0 to 4.0 Hz) were compared with observed Modified Mercalli (MM) intensities from the 29 April 1965, Puget Sound earthquake and with mapped surficial geologic units. Typically, the GRF values relate well with the surficial geological units. In addition, MM intensities within the V to VII range appear to be directly related to the frequencies within the 0.5 to 4.0 Hz bandwidth such that MM V intensity sites had a lower GRF value in the 2.0 to 4.0 Hz bandwidth as compared to the 0.5 to 2.0 Hz bandwidth, and the MM VII intensity sites had higher GRF values in the 2.0 to 4.0 Hz bandwidth as compared to the 0.5 to 2.0 Hz bandwidth. The set of GRF values determined for the city of Olympia and its vicinity should be useful in formulating a theoretical relative ground-response model for the southern Puget Sound area.

1967 ◽  
Vol 57 (3) ◽  
pp. 515-543 ◽  
Author(s):  
Luis M. Fernandez

abstract The layers of the earth's crust act as a filter with respect to seimic energy arriving at a given station. Consequently the motion recorded at the surface depends not only on the frequency content of the source and on the response characteristics of the recording instrument, but also on the elastic parameters and thicknesses of the transmitting layers. This latter dependence is the basis for a method of investigating the structure of the crust and upper mantle. To facilitate this investigation a set of master curves for the transfer functions of the vertical and horizontal component of longitudinal waves and their ratios is presented. The calculation of these curves is in terms of a dimensionless parameter. This calculation allows one to group the curves corresponding to different crustal models into families of curves. The characteristics of these curves are discussed from the point of view of their “periodicity” in the frequency domain and of their amplitude in order to investigate the influence of the layer parameters. Considerations, either of constructive interference or of Fourier analysis of a pulse multiply reflected within the layer system, reveal that the amplitudes of the transfer curves depend on the velocity contrasts at the interfaces of the system. The “periodicity” or spacing of the peaks depends on the time lags between the first arrivals and the arrivals of the different reverberations. Closely spaced fluctuations correspond to large-time lags, and widely spaced fluctuations to short-time lags.


2018 ◽  
Vol 7 (4.20) ◽  
pp. 45
Author(s):  
Heba Kamal

New Damietta City is situated in a locale of moderate notable seismicity about M6.25 have happened. These dangerous tremors started from the Mediterranean subduction zone among African and Eurasian plates and is underlain by soaked late Holocene stores. In this examination, the city of New Damietta was assessed regarding site intensification and site period. Geographical and geotechnical examination including information base of 543 boreholes were gathered from past geotechnical reports and corroborative exhausting logs were executed by the Lodging and Building national Exploration focus. These information were incorporated to decide the variety of the dirt profile and in addition the qualities of the dirt layers inside the investigation site. One dimensional ground response close examination using corresponding straight system and nonlinear procedure have been done. Nonlinear examinations' results were differentiated and those of the indistinguishable direct method, and both of the similarities and differences are discussed. It is assumed that because of nonlinearity of soil under strong ground developments, 1-D parallel direct showing overestimates the strengthening structures the extent that add up to upgrade level, and can't viably speak to full frequencies and hysteric soil lead. Along these lines, more reasonable and suitable numerical strategies for ground reaction examination ought to be reviewed  


2021 ◽  
Vol 25 (6) ◽  
pp. 61-67
Author(s):  
I.V. Zen’kov ◽  
Trinh Le Hung ◽  
Yu.P. Yuronen ◽  
P.M. Kondrashov ◽  
A.A. Latyntsev ◽  
...  

A brief description of the industrial and logistics center operating in the city of Novorossiysk on the coast of the Tsemesskaya Bay in the Black Sea is presented. According to remote sensing data, the area of open pit mining of rock dumps dumped during the development of three marl deposits for use at four cement plants was determined. According to the results of satellite imagery and analytical calculations, downward trends in changes in the density of vegetation cover in territories with natural landscapes adjacent to the territory of industrial facilities located on the coast of the Tsemesskaya Bay were revealed.


1971 ◽  
Vol 61 (5) ◽  
pp. 1213-1231
Author(s):  
John Lysmer ◽  
H. Bolton Seed ◽  
Per B. Schnabel

abstract The response characteristics of nine typical soil deposits over different types of base rock are studied in order to evaluate the influence of the base-rock characteristics on the surface accelerations. The study shows that the spectra for the surface accelerations are virtually independent of the properties of the base rock provided the latter is homogeneous. However, layering of the base rock may influence the surface acceleration spectra to an appreciable extent and certain types of analytical procedures may give grossly erroneous results for such cases.


Sign in / Sign up

Export Citation Format

Share Document