Total GHG emissions of beef, pork, poultry and sheep and goat meat produced in EU27 in 2004, calculated with a cradle-to-gate life-cycle analysis with CAPRI

2019 ◽  
Vol 14 (2) ◽  
pp. 265-285 ◽  
Author(s):  
Pedro G. Machado ◽  
Marcelo Cunha ◽  
Arnaldo Walter ◽  
André Faaij ◽  
Joaquim J. M. Guilhoto

2017 ◽  
Vol 898 ◽  
pp. 1963-1969 ◽  
Author(s):  
Yan Qiong Sun ◽  
Yu Liu ◽  
Su Ping Cui

The development and application of light aggregate concrete blocks are considered as one of the key issue that promote the energy saving and emission reduction in construction and building materials industries. In this paper, the greenhouse gas (GHG) emissions of light aggregate concrete blocks during the whole life cycle were analyzed based on life cycle assessment (LCA) methodology. The results demonstrated that the amount of GHG emissions of the light aggregate concrete block was 174 kg/m3 in the system boundary of ‘from cradle to gate’. The direct GHG emissions was 51.31 kg/m3 accounting for 28.46% of the aggregate emission, while the indirect GHG emissions was 124 kg/m3. The cement production and the concrete block production were the main contributors to the total emissions. According to the sensitivity analysis, the GHG emissions amount was quite sensitive to the amount of cement and ceramsite consumption.


2017 ◽  
Vol 11 (4) ◽  
pp. 572-582 ◽  
Author(s):  
Kamila Romejko ◽  
◽  
Masaru Nakano

Electric vehicles (EVs) are considered a promising technology to mitigate air pollution and resource depletion problems. The emissions from the manufacturing process can cause severe health problems like chronic asthma and even death. Automakers and policy makers need to investigate the lifecycle emissions of EVs in different regions and then governments should decide if it is safe to establish EV production facilities in their country or whether it is more appropriate to import finished products. The objective of this study is to evaluate the air pollutant emissions produced by EVs and gasoline vehicles (GVs) during their life cycles under two technology scenarios. Life cycle analysis (LCA) was applied to quantify greenhouse gas (GHG) and non-GHG emissions. We assessed air pollution from vehicles in Japan, China, and the United Kingdom (UK). Results indicate that EVs do not necessarily decrease pollutant emissions. EVs can improve air quality and reduce emissions in countries where electricity is derived from clean energy resources.


2021 ◽  
pp. 108159
Author(s):  
Mehrdad Rabani ◽  
Habtamu Bayera Madessa ◽  
Malin Ljungström ◽  
Lene Aamodt ◽  
Sandra Løvvold ◽  
...  

Author(s):  
Senta Riley ◽  
John E. Wentz ◽  
John Angeli

Wind turbines have seen increasing use over the past decades as an alternative mode of energy production. One specific use of vertical axis wind turbines is for the powering of rural telecommunication towers. In this research a cradle-to-gate life cycle analysis is used to compare three different designs for a stackable, capped, Savonius-style vertical axis wind turbine blade capable of producing from one to three kilowatts. The analysis compares the energy consumed and carbon dioxide emissions from material production and manufacturing of two different aluminum blade designs and a polypropylene design each having the same energy generation capacity. Primary and secondary aluminum materials were included in the analysis. Life cycle inventories from two software programs were used and compared with values gleaned from published literature. The results of the analysis revealed that the least energy and carbon dioxide impact came from using a recycled aluminum design while the most was from manufacturing using primary aluminum.


Sign in / Sign up

Export Citation Format

Share Document