Volume 3: Design and Manufacturing
Latest Publications


TOTAL DOCUMENTS

108
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

Published By ASMEDC

9780791854891

Author(s):  
Tushar K. Talukdar ◽  
Liang Wang ◽  
Sergio D. Felicelli

Solidification cracking represents a significant scientific and technical challenge in the rapid fabrication of bimetallic parts involving Cu and H13 tool steel. The main cause of the cracking formation is attributed to the residual stress accumulation, which depends on the thermal history and phase transformation during the deposition. In this research, a thermomechanical three-dimensional finite element model is developed to determine the temperature history and residual stress in Cu-H13 samples deposited by the Laser Engineered Net Shaping (LENS) process. The development of the model was carried out using the SYSWELD software package. The metallurgical transformations are taken into account using the temperature dependent material properties and the continuous cooling transformation diagram. Two different scanning strategies — alternative and unidirectional — are studied. The same model is also applied to a H13-H13 sample to compare the results. The input laser power is optimized for each layer and three different scanning speeds to maintain a steady molten pool size. It is observed that for a constant scanning speed the required laser power decreases with addition of more layers, and with the increase of scanning speed the laser power needs to be increased. The residual stress is found to be compressive near the center of the deposited wall and tensile at the free edges, which is consistent with the published experimental results in the literature. Similar stress distributions are obtained for both scanning strategies with higher stress concentration at the free edges of the interface between the substrate and the first layer. In these regions, the use of H13 substrate results in a higher stress accumulation than the Cu substrate.


Author(s):  
V. Ramirez-Elias ◽  
E. Ledesma-Orozco ◽  
H. Hernandez-Moreno

This paper shows the finite element simulation of a representative specimen from the firewall section in the AEROMARMI ESTELA M1 aircraft. This specimen is manufactured in glass and carbon / epoxy laminates. The specimen is subjected to a load which direction and magnitude are determined by a previous dynamic loads study [10], taking into account the maximum load factor allowed by the FAA (Federal Aviation Administration) for utilitarian aircrafts [11]. A representative specimen is manufactured with the same features of the firewall. Meanwhile a fix is built in order to introduce the load directions on the representative specimen. The relationship between load and displacement is plotted for this representative specimen, whence the maximum displacement at the specific load is obtained, afterwards it is compared with the finite element model, which is modified in its laminate thicknesses in order to decrease the deviation error; subsequently this features could be applied to perform the whole firewall analysis in a future model [10].


Author(s):  
Chittaranjan Sahay ◽  
Suhash Ghosh ◽  
Pradeep Kumar Bheemarthi

This work describes a strategy to reduce the cost associated with poor quality, by reducing the parts per million defects by Defining, Measuring, Analyzing, Implementing and Controlling (DMAIC) the production process. The method uses a combination of principles of Six Sigma applications, Lean Manufacturing and Shanin Strategy. The process has been used in analyzing the manufacturing lines of a brake lever at a Connecticut automotive components manufacturing company for reducing the cost associated with the production of nonconforming parts. The analysis was carried out with the help of the data collected on nonconformance parts and the application of phase change rules from DMAIC (+). Data analysis was carried out on statistical process control softwares, MINITAB and SPC XL 2000. Although, the problem of tight bushing existed on only one line of the brake lever assembly, this problem solving approach has solved the tight bushing problems on all assembly and alternates lines in a time- and cost-effective way.


Author(s):  
Melanie Stephan ◽  
Jens O. Weber ◽  
Ulrich Wuttke ◽  
Christina Berger

Bolted joints are a major part of wind energy plants. Due to climatic conditions, they are often exposed to temperatures far below the freezing point. Together with the multiaxial state of stress, which results from the notch effect of the thread, and possible dynamic overloads during operation, sufficient ductility of the material is needed. The state of the art method to investigate the ductile behavior of fasteners is the Charpy pendulum impact test with a V-notched specimen. According to international standard DIN EN ISO 898-1 [1] respectively ASTM F568M-07 [2], fasteners made of carbon steel and alloy steel with a body centered cubic lattice structure can be used for temperatures down to 223 K (−50°C, −58°F) as long as a minimum impact energy of 27 J at 253 K (−20°C, −4°F) is met. As there are several disadvantages in using this test method for fasteners, a detailed examination of existing test methods and design concepts is necessary to find alternatives to the Charpy pendulum impact test. Extensive quasi-static and dynamic material tests were conducted on fasteners with property classes 5.6, 10.9 and 12.9 in a temperature range between 203 K (−70°C, −94°F) and room temperature 293 K (20°C, 68°F). Both mechanical properties and the influence of different specimen geometries were evaluated. Analytical concepts for the description of the low temperature applicability of different steels were analyzed.


Author(s):  
Masuo Murakami ◽  
Yuqiu Yang ◽  
Hiroyuki Hamada

Natural composites have been important materials system due to preservation of earth environments. Natural fibers such as jute, hemp, bagasse and so on are very good candidate of natural composites as reinforcements. On the other hand regarding matrix parts thermosetting polymer and thermoplastic polymer deriver form petrochemical products are not environmental friendly material, even if thermoplastic polymer can be recycled. In order to create fully environmental friendly material (FEFM) biodegradable polymer which can be deriver from natural resources is needed. Therefore poly(lactic acid) (PLA) polymer is very good material for the FEFM. However, PLA is very brittle polymer, so that polymer chemists have been made the efforts to make tough PLA. In this paper Jute/PLA composites was fabricated by injection moldings and mechanical properties were measured. It is believable that industries will have much attention to FEFM, so that injection molding was adopted to fabricate the composites. Long fiber pellet pultrusion technique was adopted to prepare jute fiber-PLA pellet (Jute/PLA). Because it is a new method which is able to fabricate composite pellets with relative long length fibers for injection molding process, where, jute yarns were continuously pulled and coated with PLA resin. Here two kinds of PLA materials were used including the one with mold releasing agent and the other is without it. After pass through a heated die whereby PLA resin impregnates into the jute yarns and sufficient cooling, the impregnated jute yarns were cut into pellets. Then Jute/PLA pellets were fed into injection machine to make dumbbell shape specimens. In current study, the effects of temperature of heat die i.e. impregnation temperature and the kind of PLA were focused to get optimum molding condition. The volume fractions of jute fiber in pellet were measured by several measuring method including image analyzing, density measurement and dissolution methods. And the mechanical property were investigated by tensile and Izod testing. It is found that 250 degree is much suitable for Jute/PLA long fiber pultrusion process. Additionally the jute fibers seem much effective to increase the tensile modulus and the Izod strength. That is to say, the addition of Jute fiber in PLA, the brittle property can be improved.


Author(s):  
Dongdong Zhang ◽  
Douglas E. Smith ◽  
David A. Jack ◽  
Stephen Montgomery-Smith

This paper studies the rheological properties of a semi-dilute fiber suspension for short fiber reinforced composite materials processing. For industrial applications, the volume fraction of short fibers could be large for semi-dilute and concentrated fiber suspensions. Therefore, fiber-fiber interactions consisting of hydrodynamic interactions and direct mechanical contacts could affect fiber orientations and thus the rate of fiber alignment in the manufacturing processing. In this paper, we study the semi-dilute fiber suspensions, i.e. the gap between fibers becomes closer, and hydrodynamic interactions becomes stronger, but the physical/mechanical contacts are still rare. We develop a three-dimensional finite element approach for simulating the motions of multiple fibers in low-Reynolds-number flows typical of polymer melt flow. We extend our earlier single fiber model to consider hydrodynamic interactions between fibers. This approach computes the hydrodynamic forces and torques on fibers by solving governing equations of motion in fluid. The hydrodynamic forces and torques result from two scenarios: gross fluid motion and hydrodynamic interactions from other fibers. Our approach seeks fibers’ velocities that zero the hydrodynamic torques and forces acting on the fibers by the surrounding fluid. Fiber motions are then computed using a Runge-Kutta approach to update fiber positions and orientations as a function of time. This method is quite general and allows for solving multiple fiber suspensions in complex fluids. Examples with fibers having various starting positions and orientations are considered and compared with Jeffery’s single fiber solution (1922). Meanwhile, we study the effect of the presence of a bounded wall on fiber motions, which is ignored in Jeffery’s original work. The possible reasons why fiber motions observed in experiments align slower than those predicted by Jeffery’s theory are discussed in this paper.


Author(s):  
Raghu V. Prakash

Creep, creep-fatigue damage is often estimated through in-situ metallography, tensile testing of specimens. However, these methods require specimen preparation which includes specimen extraction from critical components. Automated ball indentation testing has been used as an effective tool to determine the mechanical properties of metallic materials. In this work, the tensile properties of materials subjected to controlled levels of damage in creep, creep-fatigue is studied. It is found that the tensile properties such as yield strength and UTS deteriorates with creep damage, whereas the same specimens show an improved UTS values (at the cost of ductility) when subjected to creep-fatigue interactions.


Author(s):  
Ali A. Tarhini ◽  
Ramsey F. Hamade

Under cathodic conditions, rubber/steel adhesive bonded joints have been documented to ‘weaken’ due to attack by the generated alkali. If this were to occur under the action of cleavage mechanical loads, the bonds are likely to completely ‘delaminate’ causing the bonded constituents to physically separate. These two modes of disbondment are referred to as ‘weakening’ and ‘delamination’, respectively. Previously, Hamade and coworkers have implemented empirical and semi-empirical approaches to modeling cathodic disbondment of adhesive joints. Here, a method is presented to simulate bond weakening progress via numerical solutions. Bond degradation is modeled as a liquid-solid chemical reactor due to the attack by the alkaline medium. Specifically, the diffusion and chemical reaction processes involved in weakening are mathematically represented via a simplified, 2 partial differential equations (p.d.e.) boundary value problem (BVP). This is a reduced version of the more complex electrochemical formulation needed to fully describe the chemistry at the bondline under cathodic conditions. The weakening model is capable of simulating weakened bond lengths vs. time as function of electrolyte type (artificial sweater, ASW, or 1N NaOH), cathodic potential, and temperature. Furthermore and to model bond delamination, a mechano-chemical failure criterion is incorporated into the weakening formulation effectively coupling fracture mechanics principles with those of cathodic degradation. A fracture mechanics parameter, applied strain energy release rate, G, is used to represent the effect of externally applied loads. The failure criterion stipulates that the bond will delaminate if the applied G exceeds that of the degraded bond’s residual resistance. Both, the weakening and delamination formulations are validated against experimental data of bond weakening and delamination under a variety of conditions. As such, the numerical simulations developed in this work may be used to provide first order estimates of the life of rubber/steel bonded joints (weakened or delaminated lengths vs. time) as function of cathodic parameters and applied G (if the joint is loaded in the case of delamination).


Author(s):  
R. Asmatulu ◽  
M. Ghaddar

Surface free energy of composite and coatings are critically important for the performance of the materials since the change in surface free energies can drastically affect the physical, chemical and physicochemical properties, and hence the service life of them. The characterization of the surface free energy is the key issue to understand the mechanisms of the surface degradation. Acid-base interaction is one way of determining the surface free energy change on these surfaces. In the present study, we exposed composite and coating surfaces to UV light, and then measured the contact angle values using various liquids (e.g., DI water, diiodomethane and glycerol). Using the van Oss approach, we calculated the surface energy changes of the surfaces exposed to the UV light. We found that the surface energy, acidity and basicity of the composite and coating materials were drastically changed as a function of UV exposure time. This study can be useful for the moisture uptake of composites, composite degradation, aging and service life of these products.


Author(s):  
Arnab Ganguly ◽  
Alina Alexeenko ◽  
Frank DeMarco

Freeze-drying is a low-pressure, low-temperature condensation pumping process widely used in the manufacture of pharmaceuticals for removal of solvents by sublimation. The performance of a freeze-dryer condenser is largely dependent on the vapor and ice dynamics in the low-pressure environment. The main objective of this work is to develop a modeling and computational framework for analysis of vapor flow and ice dynamics in such freeze-dryer condensers. The direct Simulation Monte Carlo (DSMC) technique is applied to model the relevant physical processes that accompany the vapor flow in the condenser chamber. Low-temperature water vapor and nitrogen molecular model is applied in the DSMC solver SMILE to simulate the bulk vapor transport. The developing ice front on the coils of the condenser is tracked based on the steady state mass flux computed at the nodes of the DSMC surface mesh. Verification of ice accretion simulations has been done by comparison with the solution for analytical free-molecular flow over a circular cylinder. The developed model has also been validated with measurements of ice growth in a laboratory and production scale freeze-dryer using time-lapse imaging. To illustrate the application of the ice accretion algorithm in the area of bio-pharmaceutical freeze-drying, the current work discusses the effect of the condenser geometry and non-condensable gas on non-uniformity of mass flux in a laboratory scale and production scale freeze-dryer condenser. In addition, the simulations are used to predict the ice formation on the coils of the condenser. It was found that in the laboratory scale dryer, the presence of a duct connecting the product chamber and condenser increased non-uniformity by 65% at a sublimation rate of 5 g/hr. The measured ice thickness on the coils of the condenser was found to increase non-linearly. This non-linearity was captured within an accuracy of 1% compared to the measurements towards the end of a 24 hour cycle using an unsteady icing model while that using a steady model was within 14%. In the production dryer, while the steady model predicted the iced coil diameter within an accuracy of 2–5% with respect to the measurements, the unsteady model captured this within an accuracy of 1–6%. The DSMC simulations demonstrate that by augmenting its capabilities with the icing model, it is possible to predict the performance of a freeze-dryer condenser with any arbitrary design.


Sign in / Sign up

Export Citation Format

Share Document