concrete block
Recently Published Documents


TOTAL DOCUMENTS

927
(FIVE YEARS 258)

H-INDEX

21
(FIVE YEARS 5)

2022 ◽  
Vol 253 ◽  
pp. 115168
Author(s):  
P.A. González-Gómez ◽  
M. Laporte-Azcué ◽  
M. Fernández-Torrijos ◽  
D. Santana

Author(s):  
Ananda Selvan

Abstract: A light weight concrete block using granulated corncob as an aggregate is investigated in this research work. Considering corn cob after removing the corn is said to be agricultural waste. Finding practical uses of this waste for manufacturing concrete block may preserve the environment and also allow green technologies. These concrete blocks are studied in terms of compressive strength, water absorption; density and unit weight were experimentally studied. The results obtained are submitted which shows that corn cob blocks have sufficient material properties for non-structural application in building for construction of partition walls. This is the alternative for blocks in expanded clay, expanded polystyrene, particles of cork, coconut coir etc. In this research a clay brick is compared as a reference block or control block. Nine specimen blocks were prepared in a size of 400mm x 200mm x 100mm and cured for 7 days, 14 days and 28 days and subjected to compressive strength test, water absorption test and density. The results are compared with conventional clay bricks. Corn cob blocks offered a good strength, low density and less water absorption. Keywords: Agricultural waste, compressive strength, durability, granulated corn


Author(s):  
Hemchandra Chaulagain ◽  
Ram Giri

The building structure with infill wall shows higher global stiffness along with the uncertain behaviour during 2015 Gorkha earthquake. It significantly increased the collapse rate of structures during earthquakes. The response of buildings with different infills during seismic excitations is not completely accounted by current seismic codes in the region. On the other hand, due to the different geological region, availability of infill materials for reinforced concrete building also differs on region to region. In most of the situations the burnt clay brick, concrete blocks and stone block are used as infill materials during building construction. In this scenario, this study explores the importance of selection of right infill material for better seismic performance during earthquakes. For this, building constructed at Pokhara Metropolitan City is considered for case study. The structural model is prepared with and without considering infills. The solid, hollow concrete block and clay brick masonry are taken as infill material during analysis. The structural behaviour during earthquakes is studied with non-linear static pushover. The result shows that the hollow concrete block masonry infill (INHB) shows better structural performance compared to other infill types.


2021 ◽  
Vol 2145 (1) ◽  
pp. 012032
Author(s):  
B Kaewsai ◽  
P Torkittikul ◽  
A Chaipanich

Abstract This research work investigated the properties of concrete block made from Portland cement and aggregate replacement materials. Portland cement (PC) was replaced by fly ash (FA) at 10%, 20%, 30% and sand was replaced by bottom ash (BA) at 10% by weight. Water was used at 7% by weight of total solid mass. Binder : Sand : Stone dust ratio of 1 : 5 : 6, 1 : 4 : 5 and 1 : 3.5 : 4.5 were used. Compressive strength were tested after curing in air for 28 days. The results showed that compressive strength of 1 : 5 : 6 ratio was lower than others. Concrete block replaced PC by fly ash had lower compressive strength when amount of fly ash increased. Concrete block had lower compressive strength when replaced sand by bottom ash. As a result, the mixes with FA as PC replacement and BA as sand replacement at the ratio of 1 : 5 : 6 did not meet the requirement of Thai industrial standard. However, concrete block with PC replaced by fly ash at 10%, 20% and sand replaced by bottom ash at 10% of 1 : 3.5 : 4.5 ratio was higher than 1 : 5 : 6 ratio and this ratio meet the requirement of Thai industrial standard.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7182
Author(s):  
Jong Won Lee ◽  
Sang Hyuk Lee ◽  
Young Il Jang ◽  
Hee Mun Park

The use of titanium dioxide in concrete block pavements is a promising approach to reduce air pollution in the roadside. When TiO2 is used as an additive of cement concrete or mortar, it is not dispersed uniformly due to agglomeration between particles causing the degradation of photocatalytic reaction. To improve the photocatalytic performance of TiO2, the Nano SiO2-TiO2 (NST) has been developed by coating TiO2 with SiO2 as a support using the sol-gel method. The environmental performance of concrete blocks incorporating NST as an additive was evaluated using both laboratory and full-scale chamber experiments. It was observed from laboratory environment chamber testing that the NO reduction efficiency of concrete blocks with 4% NST ranged from 16.5 to 59.1%, depending on the UV intensity. Results of the full-scale chamber test on NST concrete blocks indicated that the NO and SO2 reduction efficiencies were 22.3% and 14.4% at a 564W/m2 of solar radiation, respectively. It was found that the increase in UV intensity and solar radiation had a positive effect on decreasing NO and SO2 concentration. In the future, the NST will be applied at in-service photocatalytic block pavements to validate the environmental performance in field conditions.


Buildings ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 578
Author(s):  
Elorn Biteau ◽  
Didier Defer ◽  
Franck Brachelet ◽  
Laurent Zalewski

An in situ estimation of the thermal properties of bio-sourced building wall insulation components is of critical importance in improving both the energy efficiency of buildings and the development of construction materials with a smaller environmental footprint. Depending on weather conditions, passive methods are not always feasible; they require time to conduct lengthy testing and may lead to significant uncertainties. This article presents an active method based on power dissipation via flat electrical resistance. The method can be implemented regardless of outdoor weather conditions and is suitable for walls with high overall thermal resistance for which the small average component of the through flow is difficult to estimate. Measurements are conducted of both wall input flows and temperatures. An inverse method, derived from a finite difference model of 1D transfers along with a multi-objective approach, enables the characteristics of a two-material assembly to be identified. A multi-objective method was chosen to solve the problems of high correlation between the thermal parameters of the model. However, the method requires the use of two temperature sensors integrated inside the wall. Following a laboratory validation phase on a PVC/plasterboard assembly, the method is implemented on an actual wall. A coating/hemp concrete assembly is also characterized as part of this work program. The thermal conductivity of the hemp concrete block was estimated at 0.12 W m−1 K−1 and is consistent with values found in the literature.


2021 ◽  
Vol 7 (11) ◽  
pp. 107768-107776
Author(s):  
Ana Clara Alves Andrade ◽  
Débora Paulino Parreira ◽  
Leonardo Lúcio de Araújo Gouveia ◽  
Ricardo Luiz Perez Teixeira

2021 ◽  
Author(s):  
Markku Karjalainen ◽  
Hüseyin Emre Ilgın ◽  
Dennis Somelar

This chapter examined the various stages and benefits of wooden extra stories from the perspective of Finnish housing and real estate companies through interviews with professionals involved in these projects. Key findings highlighted are as follows: (1) in the feasibility study, project planning primarily focuses on property condition and potential improvement targets as well as other considerations, for example, compliance with current regulations and parking arrangements; (2) in the project planning, application of extra stories is thoroughly examined, and construction costs, profits, and the sale of building rights are discussed; (3) in implementation planning, issues related to building rights, city plan change, and conditions of the company that manages the property play an important role; and (4) during construction, frequent information updates are made to residents regarding the site arrangements and the construction program. Wooden extra floor construction, which requires commitment, investment, and cooperation among the interested parties, has great potential in construction technology, contracting mechanisms, and ecological engineering solutions. It is believed that this chapter will increase the dissemination of wooden extra stories, thus contributing to the greater use of more sustainable materials in renovation projects and the ecologically sensitive engineering approaches to meet the challenges arising from climate change.


Author(s):  
Arouna Kaboré ◽  
Zoma Vincent ◽  
Palm Kalifa ◽  
Bathiebo Dieudonné Joseph

The main objective of this work is to find a material that attenuates heat transfer and provides an acceptable indoor environment in the habitat of countries with a hot and dry climate like Burkina Faso. The absence of thermal regulations in Burkina Faso leads to the development of buildings constructed with materials that do not provide thermal comfort. This study therefore aims to compare the thermal performance of local materials such as BLT, BTC, concrete block and adobe in order to propose a material adapted to the hot climate. In this work, a modelling and simulation is conducted with the COMSOL software. The modelling is done on a building of dimensions 4m×3m×3m, built successively with cut laterite block (BLT), compressed earth block (BTC), hollow concrete block, and adobe. As for the simulation, it concerns the evolution of the internal and external temperature of the building. The heat flows on the Northern and Southern sides are neglected due to the overhang of the roof. The results obtained show that the cell built with BTC allows a 4°C reduction, the one built with BLT a 2°C reduction and the one built with adobe a 1.5°C gain compared to the one built with concrete block. Thus, the material that best meets the criteria is BTC.


2021 ◽  
Vol 13 (22) ◽  
pp. 12794
Author(s):  
Ramin Safari Ghaleh ◽  
Omid Aminoroayaie Yamini ◽  
S. Hooman Mousavi ◽  
Mohammad Reza Kavianpour

Shoreline protection remains a global priority. Typically, coastal areas are protected by armoring them with hard, non-native, and non-sustainable materials such as limestone. To increase the execution speed and environmental friendliness and reduce the weight of individual concrete blocks and reinforcements, concrete blocks can be designed and implemented as Articulated Concrete Block Mattress (ACB Mat). These structures act as an integral part and can be used as a revetment on the breakwater body or shoreline protection. Physical models are one of the key tools for estimating and investigating the phenomena in coastal structures. However, it does have limitations and obstacles; consequently, in this study, numerical modeling of waves on these structures has been utilized to simulate wave propagation on the breakwater, via Flow-3D software with VOF. Among the factors affecting the instability of ACB Mat are breaking waves as well as the shaking of the revetment and the displacement of the armor due to the uplift force resulting from the failure. The most important purpose of the present study is to investigate the ability of numerical Flow-3D model to simulate hydrodynamic parameters in coastal revetment. The run-up values of the waves on the concrete block armoring will multiply with increasing break parameter (0.5<ξm−1,0<3.3) due to the existence of plunging waves until it (Ru2%Hm0=1.6) reaches maximum. Hence, by increasing the breaker parameter and changing breaking waves (ξm−1,0>3.3) type to collapsing waves/surging waves, the trend of relative wave run-up changes on concrete block revetment increases gradually. By increasing the breaker index (surf similarity parameter) in the case of plunging waves (0.5<ξm−1,0<3.3), the low values on the relative wave run-down are greatly reduced. Additionally, in the transition region, the change of breaking waves from plunging waves to collapsing/surging (3.3<ξm−1,0<5.0), the relative run-down process occurs with less intensity.


Sign in / Sign up

Export Citation Format

Share Document