A Modified Parallel Plate Flow Chamber to Study Local Endothelial Response to Recirculating Disturbed Flow

2020 ◽  
Author(s):  
Jason Matthew Sedlak
2019 ◽  
Vol 142 (4) ◽  
Author(s):  
Jason Matthew Sedlak ◽  
Alisa Morss Clyne

Abstract Atherosclerosis develops at arterial sites where endothelial cells (ECs) are exposed to low time-averaged shear stress, in particular in regions of recirculating disturbed flow. To understand how hemodynamics contributes to EC dysfunction in atheroma development, an in vitro parallel plate flow chamber gasket was modified with protruding baffles to produce large recirculating flow regions. Computational fluid dynamics (CFD) predicted that more than 60% of the flow surface area was below the 12 dynes/cm2 atheroprotective threshold. Bovine aortic endothelial cells (BAECs) were then seeded in the parallel plate flow chamber with either the standard laminar or the new disturbed flow gasket (DFG) and exposed to flow for 36 h. Cell morphology, nitric oxide (NO), proliferation, permeability, and monocyte adhesion were assessed by phase contrast and confocal microscopy. BAEC exposed to 20 dynes/cm2 shear stress in the laminar flow device aligned and elongated in the flow direction while increasing nitric oxide, decreasing permeability, and maintaining low proliferation and monocyte adhesion. BAEC in the recirculating flow and low shear stress disturbed flow device regions did not elongate or align, produced less nitric oxide, and showed higher proliferation, permeability, and monocyte adhesion than cells in the laminar flow device. However, cells in disturbed flow device regions exposed to atheroprotective shear stress did not consistently align or decrease permeability, and these cells demonstrated low nitric oxide levels. The new parallel plate DFG provides a means to study recirculating flow, highlighting the complex relationship between hemodynamics and endothelial function.


Blood ◽  
2000 ◽  
Vol 95 (2) ◽  
pp. 592-601 ◽  
Author(s):  
P. Sriramarao ◽  
Richard G. DiScipio ◽  
Ronald R. Cobb ◽  
Myron Cybulsky ◽  
Greg Stachnick ◽  
...  

The ability of the 4 integrin counterligands vascular cell adhesion molecule (VCAM)-1 or mucosal addressin (MAd)CAM-1 to support eosinophil rolling or firm adhesion under conditions of physiologic flow has not been delineated. Using a parallel plate flow chamber in vitro and intravital microscopy in vivo, we demonstrate that eosinophil rolling and adhesion on VCAM-1 is mediated by both 4β1 and 4β7 integrins. Eosinophils rolled equally efficiently on both VCAM-1 2 domain and VCAM-1 7 domain, suggesting that the N-terminal 2 domains of VCAM-1 are sufficient to support eosinophil rolling under conditions of flow. Furthermore, activation of the eosinophil β1 integrin with monoclonal antibody (mAb) 8A2 resulted in both resistance to shear stress–induced detachment from VCAM-1 in vitro and in stable arrest of rolling eosinophils on interleukin (IL)-1β–stimulated venules in vivo. Eosinophils rolled less efficiently on MAdCAM-1– than on VCAM-1–coated coverslips under conditions of flow. However, eosinophils firmly adhered as efficiently to MAdCAM-1 as to VCAM-1. Overall, these results demonstrate that both VCAM-1 and MAdCAM-1 can support eosinophil firm adhesion under conditions of flow. In contrast, VCAM-1 is significantly more efficient than MAdCAM-1 in supporting eosinophil rolling under conditions of flow.


2018 ◽  
Vol 140 (6) ◽  
Author(s):  
Hamed Avari ◽  
Kem A. Rogers ◽  
Eric Savory

The parallel plate flow chamber (PPFC) has gained popularity due to its applications in fields such as biological tissue engineering. However, most of the studies using PPFC refer to theoretical relations for estimating the wall shear stress (WSS) and, hence, the accuracy of such quantifications remains elusive for anything other than steady laminar flow. In the current study, a laser Doppler velocimetry (LDV) method was used to quantify the flow in a PPFC (H = 1.8 mm × W = 17.5 mm, Dh = 3.26 mm, aspect ratio = 9.72) under steady Re = 990, laminar pulsatile (carotid Re0-mean = 282 as well as a non-zero-mean sinusoidal Re0-mean = 45 pulse) and low-Re turbulent Re = 2750 flow conditions. A mini-LDV probe was applied, and the absolute location of the LDV measuring volume with the respect to the wall was determined using a signal monitoring technique with uncertainties being around ±27 μm. The uniformity of the flow across the span of the channel, as well as the WSS assessment for all the flow conditions, was measured with the uncertainties all being less than 16%. At least two points within the viscous sublayer of the low-Re turbulent flow were measured (with the y+ for the first point < 3) and the WSS was determined using two methods with the differences between the two methods being within 5%. This paper for the first time presents the experimental determination of WSS using LDV in a small-scale PPFC under various flow conditions, the challenges associated with each condition, and a comparison between the cases. The present data will be useful for those conducting biological or numerical modeling studies using such devices.


1992 ◽  
Vol 26 (6) ◽  
pp. 725-738 ◽  
Author(s):  
T. G. van Kooten ◽  
J. M. Schakenraad ◽  
H. C. Van der Mei ◽  
H. J. Busscher

Langmuir ◽  
2008 ◽  
Vol 24 (17) ◽  
pp. 9381-9385 ◽  
Author(s):  
Timothy R. Kline ◽  
Gexin Chen ◽  
Sharon L. Walker

Sign in / Sign up

Export Citation Format

Share Document