cellular adhesion
Recently Published Documents





2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Mohammad Gholizadeh ◽  
Ebrahim Falahi ◽  
Ammar Hassanzadeh Keshteli ◽  
Ahmadreza Yazdan Nik ◽  
Parvane Saneei ◽  

Purpose Dietary inflammatory potential (DIP) is a novel dietary index designed to evaluate individuals’ diets with considering inflammation and anti-inflammation score. In addition, adhesion molecules including soluble intracellular adhesion molecules-1 (sICAM-1), soluble cellular adhesion molecules-1 (sVCAM-1) and E-selectin are important biomarkers to assess endothelium dysfunction which are related to atherosclerosis and cardiovascular complications. Also, there is no study for assessing the association between adhesion molecules and DIP until now as well as other studies that assessed the relationship between dietary inflammatory index or DIP has controversy. The purpose of this cross-sectional study was to determine the correlation between DIP and endothelial markers such as E-selectin, sICAM-1 and sVCAM-1 among female nurses from Isfahan. In this study, DIP was used instead of DII. Design/methodology/approach This study was performed on 420 healthy nurses. The nurses were selected by random cluster sampling method from private and public Isfahan hospitals. A validated food frequency questionnaire (FFQ) was applied to assess the DIP. A fasting blood sample was collected for measuring the plasma levels of the endothelial markers and other variables. Findings After adjusting different potential confounders, no statistical association was found between DIP and sICAM-1, E–selectin and sVCAM-1 in Model I (P = 0.57, 0.98 and 0.45), Model II (P = 0.57, 0.98 and 0.45) and Model III (P = 0.67, 0.92 and 0.50) in comparison to the crude group (P = 0.35, 0.83 and 0.49, respectively). Originality/value The results revealed that the plasma levels of endothelial markers including E-selectin, sICAM-1 and sVCAM-1 were not significantly associated with DIP in female nurses.

2022 ◽  
Vol 22 (1) ◽  
Cunxiang Bo ◽  
Juan Zhang ◽  
Linlin Sai ◽  
Zhongjun Du ◽  
Gongchang Yu ◽  

Abstract Background Silicosis is a systemic disease characterized by persistent inflammation and incurable pulmonary fibrosis. Although great effort has been made to understand the pathogenesis of the disease, molecular mechanism underlying silicosis is not fully elucidated. This study was aimed to explore proteomic and transcriptomic changes in rat model of silicosis. Methods Twenty male Wistar rats were randomly divided into two groups with 10 rats in each group. Rats in the model group were intratracheally instilled with 50 mg/mL silicon dioxide (1 mL per rat) and rats in the control group were treated with 1.0 mL saline (1 mL per rat). Twenty-eight days later, transcriptomic analysis by microarray and tandem mass tags (TMT)-based proteomic analysis were performed to reveal the expression of mRNAs and proteins in lung tissues. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) were applied to analyze the altered genes and proteins. The integrated analysis was performed between transcriptome and proteome. The data were further verified by RT-qPCR and parallel reaction monitoring (PRM). Results In total, 1769 differentially expressed genes (DEGs) and 650 differentially expressed proteins (DEPs) were identified between the silicosis model and control groups. The integrated analysis showed 250 DEPs were correlated to the corresponding DEGs (cor-DEPs-DEGs), which were mainly enriched in phagosome, leukocyte transendothelial migration, complement and coagulation cascades and cellular adhesion molecule (CAM). These pathways are interrelated and converged at common points to produce an effect. GM2a, CHI3L1, LCN2 and GNAI1 are involved in the extracellular matrix (ECM) and inflammation contributing to fibrosis. Conclusion Our comprehensive transcriptome and proteome data provide new insights into the mechanisms of silicosis and helpful information for more targeted prevention and treatment of silicosis.

2022 ◽  
Brian L Zhong ◽  
Vipul T Vachharajani ◽  
Alexander R Dunn

Numerous proteins experience and respond to mechanical forces as an integral part of their cellular functions, but measuring these forces remains a practical challenge. Here, we present a compact, 11 kDa molecular tension sensor termed STReTCh (Sensing Tension by Reactive Tag Characterization). Unlike existing genetically encoded tension sensors, STReTCh does not rely on experimentally demanding Förster resonance energy transfer (FRET)-based measurements and is compatible with typical fix-and-stain protocols. Using a magnetic tweezers assay, we calibrate the STReTCh module and show that it responds to physiologically relevant, piconewton forces. As proof-of-concept, we use an extracellular STReTCh-based sensor to visualize cell-generated forces at integrin-based adhesion complexes. In addition, we incorporate STReTCh into vinculin, a cytoskeletal adaptor protein, and show that STReTCh reports on forces transmitted between the cytoskeleton and cellular adhesion complexes. These data illustrate the utility of STReTCh as a broadly applicable tool for the measurement molecular-scale forces in biological systems.

Meng Yang ◽  
Zheng-Chu Zhang ◽  
Yan Liu ◽  
You-Rong Chen ◽  
Rong-Hui Deng ◽  

Bone and cartilage injury is common, tissue engineered scaffolds are potential means to repair. Because most of the scaffold materials used in bone and cartilage tissue engineering are bio-inert, it is necessary to increase the cellular adhesion ability of during tissue engineering reconstruction. The Arginine - Glycine - Aspartic acid (Arg-Gly-Asp, RGD) peptide family is considered as a specific recognition site for the integrin receptors. Integrin receptors are key regulators of cell-cell and cell-extracellular microenvironment communication. Therefore, the RGD polypeptide families are considered as suitable candidates for treatment of a variety of diseases and for the regeneration of various tissues and organs. Many scaffold material for tissue engineering and has been approved by US Food and Drug Administration (FDA) for human using. The application of RGD peptides in bone and cartilage tissue engineering was reported seldom. Only a few reviews have summarized the applications of RGD peptide with alloy, bone cements, and PCL in bone tissue engineering. Herein, we summarize the application progress of RGD in bone and cartilage tissue engineering, discuss the effects of structure, sequence, concentration, mechanical stimulation, physicochemical stimulation, and time stimulation of RGD peptide on cells differentiation, and introduce the mechanism of RGD peptide through integrin in the field of bone and cartilage tissue engineering.

Lara Carolina Micus ◽  
Franziska Susanne Trautschold-Krause ◽  
Anna Lena Jelit ◽  
Michael Peter Schön ◽  
Verena Natalie Lorenz

AbstractSkin fibrosis is one central hallmark of the heterogeneous autoimmune disease systemic sclerosis. So far, there are hardly any standardized and effective treatment options. Pathogenic mechanisms underlying fibrosis comprise excessive and uncontrolled myofibroblast differentiation, increased extracellular matrix protein (ECM) synthesis and an intensification of the forces exerted by the cytoskeleton. A deeper understanding of fibroblast transformation could help to prevent or reverse fibrosis by specifically interfering with abnormally regulated signaling pathways. The transcription factor NF-κB has been implicated in the progression of fibrotic processes. However, the cellular processes regulated by NF-κB in fibrosis as well as the NF-κB isoforms preferentially involved are still completely unknown. In an in vitro model of fibrosis, we consistently observed the induction of the c-Rel subunit of NF-κB. Functional abrogation of c-Rel by siRNA resulted in diminished cell contractility of dermal fibroblasts in relaxed, but not in stressed 3D collagen matrices. Furthermore, directed migration was reduced after c-Rel silencing and total N-cadherin expression level was diminished, possibly mediating the observed cellular defects. Therefore, NF-кB c-Rel impacts central cellular adhesion markers and processes which negatively regulate fibrotic progression in SSc pathophysiology.

Biosensors ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 498
Laverne Diana Robilliard ◽  
Jane Yu ◽  
Sung-Min Jun ◽  
Akshata Anchan ◽  
Graeme Finlay ◽  

Glioblastoma is considered the most aggressive and lethal form of brain cancer. Glioblastoma tumours are complex, comprising a spectrum of oncogenically transformed cells displaying distinct phenotypes. These can be generated in culture and are called differentiated-glioblastoma cells and glioblastoma stem cells. These cells are phenotypically and functionally distinct, where the stem-like glioblastoma cells give rise to and perpetuate the tumour. Electric cell-substrate impedance sensing (ECIS) is a real-time, label-free, impedance-based method for the analysis of cellular behaviour, based on cellular adhesion. Therefore, we asked the question of whether ECIS was suitable for, and capable of measuring the adhesion of glioblastoma cells. The goal was to identify whether ECIS was capable of measuring glioblastoma cell adhesion, with a particular focus on the glioblastoma stem cells. We reveal that ECIS reliably measures adhesion of the differentiated glioblastoma cells on various array types. We also demonstrate the ability of ECIS to measure the migratory behaviour of differentiated glioblastoma cells onto ECIS electrodes post-ablation. Although the glioblastoma stem cells are adherent, ECIS is substantially less capable at reliably measuring their adhesion, compared with the differentiated counterparts. This means that ECIS has applicability for some glioblastoma cultures but much less utility for weakly adherent stem cell counterparts.

2021 ◽  
Vol 12 ◽  
Qi Jin ◽  
Xiaohua Jiang ◽  
Xin Du ◽  
Weiping Hu ◽  
Shun Bai ◽  

Because the incidence of endometrial cancer is notably increasing worldwide, it has become the leading gynecologic cancer in the United States. Standard treatment results in the loss of reproductive function in women of childbearing age. Furthermore, advanced cancer stages are associated with poor overall survival. The aim of this study was to explore the abnormal expression profile of genes during the development of endometrial cancer, which is essential to provide a better understanding of the mechanisms involved. Five pairs of endometrial cancer tissues and normal endometrial tissues were subjected to next-generation transcriptome sequencing technology. Quantitative real-time PCR (RT-qPCR) was performed to validate the expression profile of key differentially expressed genes (2.0-fold change, adj. p < 0.05) (DEGs) identified in the RNA-seq result. GO and KEGG pathways were used for bioinformatic analyses. The transcriptomic sequencing results showed 1153 DEGs, including 673 upregulated and 480 downregulated genes, in the EC specimens. Decreased expression of ID1, IGF1, GDF7, SMAD9, TGF-beta and WNT4, as well as GDF5, INHBA and ERBB4 overexpression, were confirmed in EC using RT-qPCR. Additionally, EC tissue exhibited marked enrichment in genes promoting cellular adhesion, proliferation, migration and plasma membrane. KEGG analysis revealed changes in various pathways, such as the TGF-beta, PI3K-Akt, Wnt, and estrogen pathways. Our data describe the molecular events involved in the pathogenesis of EC, which may be potential diagnostic markers and targets of therapeutic interventions.

Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1781
Beatrix Péter ◽  
Imre Boldizsár ◽  
Gábor M. Kovács ◽  
Anna Erdei ◽  
Zsuzsa Bajtay ◽  

Plants and fungi can be used for medical applications because of their accumulation of special bioactive metabolites. These substances might be beneficial to human health, exerting also anti-inflammatory and anticancer (antiproliferative) effects. We propose that they are mediated by influencing cellular adhesion and migration via various signaling pathways and by directly inactivating key cell adhesion surface receptor sites. The evidence for this proposition is reviewed (by summarizing the natural metabolites and their effects influencing cellular adhesion and migration), along with the classical measuring techniques used to gain such evidence. We systematize existing knowledge concerning the mechanisms of how natural metabolites affect adhesion and movement, and their role in gene expression as well. We conclude by highlighting the possibilities to screen natural compounds faster and more easily by applying new label-free methods, which also enable a far greater degree of quantification than the conventional methods used hitherto. We have systematically classified recent studies regarding the effects of natural compounds on cellular adhesion and movement, characterizing the active substances according to their organismal origin (plants, animals or fungi). Finally, we also summarize the results of recent studies and experiments on SARS-CoV-2 treatments by natural extracts affecting mainly the adhesion and entry of the virus.

Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1760
Silvia Ancona ◽  
Emanuela Orpianesi ◽  
Clara Bernardelli ◽  
Eloisa Chiaramonte ◽  
Raffaella Chiaramonte ◽  

Matrix metalloproteinase (MMP) dysregulation is implicated in several diseases, given their involvement in extracellular matrix degradation and cell motility. In lymphangioleiomyomatosis (LAM), a pulmonary rare disease, MMP-2 and MMP-9 have been detected at high levels in serum and urine. LAM cells, characterized by a mutation in the tuberous sclerosis complex (TSC)1 or TSC2, promote cystic lung destruction. The role of MMPs in invasive and destructive LAM cell capability has not yet been fully understood. We evaluated MMP-2 and MMP-7 expression, secretion, and activity in primary LAM/TSC cells that bear a TSC2 germline mutation and an epigenetic modification and depend on epidermal growth factor (EGF) for survival. 5-azacytidine restored tuberin expression with a reduction of MMP-2 and MMP-7 levels and inhibits motility, similarly to rapamycin and anti-EGFR antibody. Both drugs reduced MMP-2 and MMP-7 secretion and activity during wound healing and decreased their expression in lung nodules of a LAM mouse model. In LAM/TSC cells, MMP-2 and MMP-7 are dependent on tuberin expression, cellular adhesion, and migration. MMPs appears sensitive to rapamycin and anti-EGFR antibody only during cellular migration. Our data indicate a complex and differential modulation of MMP-2 and MMP-7 in LAM/TSC cells, likely critical for lung parenchyma remodeling during LAM progression.

2021 ◽  
Malancha Ta ◽  
Ankita Sen

Mesenchymal stem cell (MSC)-based cellular therapy gets compromised as adverse microenvironmental conditions like nutrient deprivation, ischemia, hypoxia affect migration and engraftment, in addition to viability, of MSCs at the target site post transplantation. To improve the treatment efficacy, it is critical to identify factors involved in regulating migration and adhesion of MSCs under such microenvironmental stress conditions. In our study, we observed that Wharton's jelly-MSCs (WJ-MSCs) exhibited increase in cell spread area and adhesion with reduction in cellular migration under serum starvation. The changes in adhesion and migration characteristics were accompanied by extensive stress fibre formation and altered ECM gene expression with notable induction in vitronectin (VTN) expression and reduction in MMP-1 expression. Molecular and phenotypic correlative studies advocated the possible role of VTN and not MMP-1, in regulating adhesion and migration of WJ-MSCs. NF-kb was found to be the positive regulator of VTN expression while ERK pathway regulated it negatively. Further investigation with inhibition of these signalling pathways or VTN knockdown studies under serum starvation established the correlation between increase in VTN expression and increased cellular adhesion with corresponding reduction in migration. VTN knockdown under serum starvation also led to reduction in actin stress fibre along with reversal in expression of several ECM genes. Additionally, VTN induction being absent in hypoxia-treated WJ-MSCs, the hypoxic cells showed no significant change in the adhesion and migration properties. However, when VTN expression was induced under hypoxia by ERK pathway inhibition, similar increase in cell spread area and adhesion was observed. Our study thus highlights VTN as a factor which is induced under serum starvation stress and possibly affects the adhesion and migration properties of WJ-MSCs.

Sign in / Sign up

Export Citation Format

Share Document