scholarly journals Design of new cyclic plasmin inhibitors

2018 ◽  
Author(s):  
Yuko Tsuda ◽  
Koushi Hidaka ◽  
Keiko Hojo ◽  
Keigo Gohda ◽  
Naoki Teno ◽  
...  
Keyword(s):  
1964 ◽  
Vol 12 (01) ◽  
pp. 119-125 ◽  
Author(s):  
Y Shamash ◽  
A Rimon

SummaryA new method for the assay of plasmin inhibitors in human plasma is described. The method consists of determination of the caseinolytic activity of a standard plasmin solution before and after incubation with the inhibitor, with lysine added to the mixture as a stabilizer of plasmin. Using this method, it was found that plasma contains enough inhibitors to inactivate 30 caseinolytic units of plasmin, or 10 times the normal amount of plasminogen in human plasma.


1982 ◽  
Vol 47 (01) ◽  
pp. 014-018 ◽  
Author(s):  
H Sumi ◽  
N Toki ◽  
S Takasugi ◽  
S Maehara ◽  
M Maruyama ◽  
...  

SummaryPapain treatment of human urinary trypsin inhibitor (UTI67; mol. wt. 43,000 by SDS-polyacrylamide gel electrophoresis, specific activity 1,897 U/mg protein) produced four new protease inhibitors, which were highly purified by gel chromatography on Sephadex G-100 and isoelectric focusing. The purified inhibitors (UTI26, UTI9-I, UTI9-II, and UTI9-III) were shown to be homogeneous by polyacrylamide disc gel electrophoresis, and had apparent molecular weights of 26,000, 9,000, 9,000, and 9,800, respectively, by sodium dodecyl sulfate gel electrophoresis. During enzymatic degradation of UTI67, the amino acid compositions changed to more basic, and the isoelectric point increased from pH 2.0 (UTI67) to pHs 4.4, 5.2, 6.6, and 8.3 (UTI26, UTI9-I, UTI9-II, and UTI9-III), respectively. Both the parent and degraded inhibitors had anti-plasmin activity as well as antitrypsin and anti-chymotrypsin activities. Much higher anti-plasmin/anti-trypsin and anti-plasmin/anti-chymotrypsin activities were observed in the degraded inhibitors than in the parent UTI67. They competitively inhibited human plasmin with Ki values of 1.13 X 10-7 - 2.12 X 10-6 M (H-D-Val-Leu-Lys-pNA substrate). The reactions were very fast and the active site of the inhibitors to plasmin was thought to be different from that to trypsin or chymotrypsin.


1953 ◽  
Vol 97 (4) ◽  
pp. 573-589 ◽  
Author(s):  
Louis Pillemer ◽  
Oscar D. Ratnoff ◽  
Livia Blum ◽  
I. H. Lepow

Human complement is inactivated by plasmin, the proteolytic enzyme of plasma or serum active at or near neutrality. The addition of streptokinase to human serum, which converts plasminogen to plasmin, also causes the inactivation of complement components C'2 and C'4 and varying amounts of C'1. C'3 is the most resistant to inactivation by plasmin. Chloroform-activated human plasmin and bovine plasmin also destroy these components of complement, but are less effective than the streptokinase-activated enzyme. The inactivation of complement by the addition of streptokinase to human serum is inhibited by high hydrogen ion concentrations, low temperature, and elevated ionic strength. The inactivation of the components of complement in various fractions of serum is influenced by the available plasminogen and the content of plasmin inhibitors in these fractions. Certain similarities are pointed out between the components of complement and the factors in the plasmin system and between the inactivation of the components of complement by antigen-antibody reactions, by specific agents, and by plasmin. The possible significance of these relationships in immune hemolysis and complement fixation, and the possible role of the plasmin system in the instability of complement and the development of anticomplementary properties in serum are discussed.


1981 ◽  
Vol 10 (1) ◽  
pp. 51-62
Author(s):  
J. Lasierra ◽  
M. Díez ◽  
C. Perera ◽  
E. Viladés

ChemBioChem ◽  
2012 ◽  
Vol 13 (3) ◽  
pp. 336-348 ◽  
Author(s):  
Joakim E. Swedberg ◽  
Jonathan M. Harris

Blood ◽  
1981 ◽  
Vol 58 (1) ◽  
pp. 97-104
Author(s):  
LA Moroz

Urokinase activation of blood fibrinolysis involves polymorphonuclear leukocytes. To determine if a leukocyte proteinase can modulate plasminogen activation, plasminogen was digested with leukocyte elastase. A major product was a small, approximately 34,000 dalton fragment (mini-plasminogen), without lysine-binding function, but with fibrin-binding activity. After urokinase activation, the resulting mini- plasmin had amidolytic activity for a tripeptide plasmin substrate and fibrinolytic activity. By 125I-fibrin assay, activities of mini-plasmin and plasmin (12 nmole/liter) were 38 and 20 ng fibrin lysed/min, respectively. Lysis times of fibrin clots containing urokinase, and mini-plasminogen or plasminogen (800 nmole/liter), were 282 and 290 sec, respectively. Mini-plasmin and plasmin were inhibited similarly by epsilon-aminocaproic acid and normal plasma, but differed in responses to gel filtration fractions of plasma containing alpha 2-antiplasmin and alpha 2-macroglobulin, the primary and secondary plasmin inhibitors. With purified inhibitors, mini-plasmin required higher concentrations of, or longer preincubation with, alpha 2-antiplasmin, and lower concentrations of, or shorter preincubation with, alpha 2- macroglobulin, to produce inhibition equivalent to that observed with plasmin. Leukocyte elastase digests plasminogen to generate a mini- plasminogen which, when activated by urokinase, has a novel pattern of response to the major plasmin inhibitors in plasma.


2019 ◽  
Vol 99 (15) ◽  
pp. 6922-6930 ◽  
Author(s):  
Seda Yildirim‐Elikoglu ◽  
Halil Vural

Sign in / Sign up

Export Citation Format

Share Document