scholarly journals Robust Parameter Design of Shielded Metal Arc Welding (SMAW) for Optimum Tensile Strength

Author(s):  
Moh. Dedy Indra Setiawan ◽  
Yanuar Rohmat Aji Pradana ◽  
Suprayitno Suprayitno

Shielded Metal Arc Welding (SMAW), an arc welding process, is widely used in applications. In practice, SMAW is widely applied to the welding process on hollow square pipe. Performance expected from this welding is the tensile strength of weld joint. The tensile strength is influenced by parameters process which have possibility for an optimization process to become ‘robust’. Robust is a design which less sensitive to the effect of uncertain quantities or noise factors. Taguchi method is the most efficient optimization method which accommodates the noise factors effect and requires less experiment. This study is focusing on optimizing the welding process on hollow square pipe. Parameters process such as welding current (I), electrode angle (θ), root gap (d) and electrode type (E) are adopted as parameters design. Taguchi method are chosen as a strategy and L9 fractional orthogonal array are chosen as the design experiment, which only 9 experiment samples needed from 81 experiments that should have been carried out for full factorial design. The objectivity is to maximize the tensile strength of weld joint. Three replications of L9 fractional orthogonal array Taguchi had been performed to generate the tensile strength and estimates the fluctuation of the output caused by noise factors. This study found that the welding current of 100A (I), electrode angle (θ) of 90°, root gap (d) of 2 mm, and electrode type (E) of E7018 produce the optimum results. Tensile strength improved from this robust parameter design is about 98.39 MPa based on initial parameter design.

2021 ◽  
Vol 7 (2) ◽  
pp. 155
Author(s):  
Andika Wisnujati ◽  
Juni Andryansyah

Welding is a very important part of the development and growth of the industry because it has a role in engineering, reparation, and construction. Shielded   Metal   Arc Welding (SMAW) or the conventional arc welding   process is particularly dominant in structural joints, pressure vessels and in maintenance and repair work. In welding, different metals are joined economically and at a much faster rate as compared with other fabrication processes like riveting and casting. The purpose of this research is to find out the cooling media cooler against SMAW smelter tensile strength by using the E6013 electrode. This study uses low carbon steel material that has levels Fe = 98,3%; C = 0,30%, Si = 0,23%. The material is given 75A welding current with cooling variation on the connection result using oil, water, and room temperature. The highest tensile stress value obtained in the oil cooling treatment was 844,76 N/mm2, the highest strain value was obtained on the raw materials of 16%, the highest elasticity value was obtained in the oil cooling treatment of 703.96 N/mm2. According to the research results can be concluded that the variations of cooling media greatly affect the strength of the welding connection.


2011 ◽  
Vol 383-390 ◽  
pp. 4672-4677
Author(s):  
M. Shahul Hameed ◽  
S.P. Sivapirakasham ◽  
K.R. Balasubramanian ◽  
R. Nagalakshmi

Welding is one of the major processes used in the manufacturing industry. The base materials, welding consumable materials and physical and chemical phenomena, which are connected with high temperature and UV radiation, are emission source of welding fumes. The particulate solid dust and various gases are included in welding fumes. This paper addresses the experimental investigation made to study the process parameters on formation and composition of fumes during shielded Metal Arc welding (SMAW) of stainless steel. The process variables include electrode diameter and welding current. It was observed that, the welding current and electrode diameter have a positive effect on the fume formation that is, increase in welding current and electrode diameter caused an increase in the concentration. All the metallic constituents attached to it also exhibited the same behavior.


Author(s):  
P. Senthilkumar

The effect of welding current on the tensile properties of low carbon steel welded joint was investigated in this research. In this work mild steel plates were joined by shielded metal arc welding process which is also known as manual metal arc welding used to examine optimum welding current. The welded samples were cut and machined to standard configurations for tensile tests. It was concluded that variation of current affect the tensile properties of the low carbon steel welded joint. As the current increases from 80A to 110A, the ultimate tensile strengths and yeild strength increases. The percentage elongation decreases with increase in welding current but increases at the welding current of 110A.


Otopro ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 18
Author(s):  
Nidia Lestari

Austenitic stainless steel or commonly known as AISI 304 stainless steel has advantages, including good ductility at relatively low temperatures and high resistance to corrosion. These properties make Austenitic Stainless Steel a candidate material for use in pipe fabrication systems, automotive exhaust gas systems and some equipment related to the chemical and nuclear industry. Therefore, it is necessary to analyze the variation of welding currents on the strength of the welds in the application of Shielded Metal Arc Welding (SMAW) on stainless steel. The electrodes used are E308-16 types with current variations of 90 amperes, 100 amperes and 110 amperes. The results showed that the electric current factor in the SMAW welding process greatly influenced the welding results in terms of its strength. The highest mechanical strength was obtained at welding current of 110 Ampere, with a heat input of 976.067 J / mm, an average mechanical strength of 68.438 kg / mm2 for tensile stress and strain of 47.451% in the tensile test, and an average value of hardness of 225.008 HV for hardness test in weld.


Joining of materials is the need of modern industries and stuctures. Shielded metal arc welding process is one of the most popular and commonly used method of joining materials. The weld reinforcement height should be optimum for mechanical properties of the weld. If the reinforcement height is less or negative, it is not recommended considering strength of weld as surface area will be reduced and if the reinforcement height is more, it will produce stress concentration which is not recommended. In the present work the investigation of the effect of three different types of electrodes at three different welding currents in shielded metal arc welding process utilizing Low Carbon Steel plate of API 5L Grade X 52, was done for reinforcement height. The three different electrodes as E 6013, E 7016 and E 7018 and the varying currents as 90 A, 100 A and 110 A. Total 18 pieces were used to obtain 9 welds which were used to analyze the effect of current and the electrode on reinforcement height. The dimensions of the work pieces were taken as 75 mm x 50 mm x 5 mm. The values of reinforcement height in each weld were written in a table and respective diagrams were drawn to make clear the effect of welding current on reinforcement height for the three different electrodes.


Author(s):  
Hanmant Virbhadra Shete ◽  
Sanket Dattatraya Gite

Gas metal arc welding (GMAW) is the leading process in the development of arc welding process for higher productivity and quality. In this study, the effect of process parameters of argon gas welding on the strength of T type welded joint of AISI 310 stainless steel is analyzed. The Taguchi technique is used to develop the experimental matrix and tensile strength of the welded joint is measured using experimental method and finite element method. Optimization of input parameter is performed for the maximum tensile strength of welded joint using ANOVA. The results showed that welding speed is the most significant factor affecting the tensile strength followed by voltage in argon gas metal arc welding (AGMAW) process. Argon gas welding process performance with regard to the tensile strength is optimized at voltage: 18.5 V, wire feed speed: 63 m/min and welding speed: 0.36 m/min.


Author(s):  
Felipe Maia Prado ◽  
Daniel José Toffoli ◽  
Sidney Leal Da Silva

Speckle, which is a branch of optics that studies the interference pattern caused by the incidence of coherent light in a material’s surface, has some optical techniques and methods that can be successfully applied to determine properties of materials. In this work we used the method called THSP, Time History Speckle Pattern, in samples made of AISI 1020 carbon steel that were submitted to the shielded metal arc welding (SMAW) process, with the objective of identifying (qualitatively) the level of irregularity on its welded surface, by comparing these samples with a default sample, made with the same material. The technique of spekle by reflection was used for data collection. The results showed quantitative diferences between the default welded sample and the other samples, and there are good perspectives that speckle can be applied to determine the quality of the welding process, since the results showed more accuracy than visual inspection.  


Sign in / Sign up

Export Citation Format

Share Document