scholarly journals Microsatellite instability as a unique characteristic of tumors and a predictor of response to immune therapy

2020 ◽  
Vol 9 (4) ◽  
pp. 59-69 ◽  
Author(s):  
A.  A. Tryakin ◽  
M.  Yu. Fedyanin ◽  
A.  S. Tsukanov ◽  
Yu.  A. Shelygin ◽  
I.  A. Pokataev ◽  
...  

Deficiency of the mismatch repair system is a unique molecular disorder that occurs in most types of tumors and leads to development of microsatellite instability (MSI) in them. The development of a hypermutated phenotype and related high immunogenicity are typically associated with more favorable prognosis as well as a high sensitivity to immunotherapy with inhibitors of immune checkpoint inhibitors. This review presents the current views on the diagnosis, prognostic and predictive significance of MSI in various tumors, as well as their response to immunotherapy.

2020 ◽  
Vol 2 (4) ◽  
pp. 341-352
Author(s):  
Gianluca Lopez ◽  
Konstantinos Venetis ◽  
Elham Sajjadi ◽  
Nicola Fusco

Alterations in the mismatch repair (MMR) system result in genomic instability, neoantigen production, and immune response in cancer. There is evidence that gastroesophageal tumors with MMR deficiency may be susceptible to immune-checkpoint inhibitors treatment, especially in those presenting at advanced-stage disease. Although a number of biomarkers have been developed in histology-agnostic settings to assess MMR status, there is evidence that a tumor-specific testing approach would improve the selection of patients for immunotherapy. However, no testing methods have been developed specifically for gastroesophageal cancers so far. Here, we discuss the state of the art, current advances, and future perspectives of MMR-related biomarkers’ biologic and clinical role in gastroesophageal cancers.


2017 ◽  
pp. 1-15 ◽  
Author(s):  
Russell Bonneville ◽  
Melanie A. Krook ◽  
Esko A. Kautto ◽  
Jharna Miya ◽  
Michele R. Wing ◽  
...  

Purpose Microsatellite instability (MSI) is a pattern of hypermutation that occurs at genomic microsatellites and is caused by defects in the mismatch repair system. Mismatch repair deficiency that leads to MSI has been well described in several types of human cancer, most frequently in colorectal, endometrial, and gastric adenocarcinomas. MSI is known to be both predictive and prognostic, especially in colorectal cancer; however, current clinical guidelines only recommend MSI testing for colorectal and endometrial cancers. Therefore, less is known about the prevalence and extent of MSI among other types of cancer. Methods Using our recently published MSI-calling software, MANTIS, we analyzed whole-exome data from 11,139 tumor-normal pairs from The Cancer Genome Atlas and Therapeutically Applicable Research to Generate Effective Treatments projects and external data sources across 39 cancer types. Within a subset of these cancer types, we assessed mutation burden, mutational signatures, and somatic variants associated with MSI. Results We identified MSI in 3.8% of all cancers assessed—present in 27 of tumor types—most notably adrenocortical carcinoma (ACC), cervical cancer (CESC), and mesothelioma, in which MSI has not yet been well described. In addition, MSI-high ACC and CESC tumors were observed to have a higher average mutational burden than microsatellite-stable ACC and CESC tumors. Conclusion We provide evidence of as-yet-unappreciated MSI in several types of cancer. These findings support an expanded role for clinical MSI testing across multiple cancer types as patients with MSI-positive tumors are predicted to benefit from novel immunotherapies in clinical trials.


2006 ◽  
Vol 130 (1) ◽  
pp. 52-56 ◽  
Author(s):  
Jennifer L. Hunt

Abstract Context.—Warthin tumors are controversial entities with a poorly understood etiology. Although some investigators have suggested a neoplastic origin, others have supported a developmental anomaly. A recent study described the absence of staining for hMLH1 and hMSH2 proteins in the epithelial component of Warthin tumors, suggesting that they arise secondary to defects in the DNA mismatch repair system. Objective.—To determine if Warthin tumors exhibit evidence of DNA mismatch repair defects. Design.—Immunostains for hMLH1 and hMSH2 were performed using a standard approach. Microdissection of the epithelial component was followed by DNA extraction from the tissue fragments. Polymerase chain reaction and capillary electrophoresis analyses were performed for the following 5 National Cancer Institute–recommended microsatellites: D2s123, D5s346, D17s250, BAT25, and BAT26. Patients.—Twelve patients with Warthin tumors were included. Results.—The immunostains for hMLH1 and hMSH2 showed preserved expression in the nuclei of the epithelial component of all Warthin tumors. No microsatellite instability was detected, and no loss of heterozygosity was seen. Conclusions.—These results are not concordant with previously reported results showing loss of expression of the hMLH1 and hMSH2 DNA mismatch repair enzymes in the epithelial component of Warthin tumors. Furthermore, no microsatellite instability was detected in the 5 loci tested for each tumor in this series. These data demonstrate that Warthin tumors do not have evidence of DNA mismatch repair defects at the genomic or protein expression level.


Sign in / Sign up

Export Citation Format

Share Document