scholarly journals Investigations on the Theory of Riemann Zeta Function I: New Functional Equation, Integral Representation and Laurent Expansion for Riemann’s Zeta Function

Author(s):  
Edigles Guedes ◽  
Raja Rama Gandhi ◽  
Srinivas Kishan Anapu

We developed a new functional equation and a new integral representation for the Riemann zeta function.

2011 ◽  
Vol 16 (1) ◽  
pp. 72-81 ◽  
Author(s):  
Ramūnas Garunkštis ◽  
Joern Steuding

We study the sequence of nontrivial zeros of the Riemann zeta-function with respect to sequences of zeros of other related functions, namely, the Hurwitz zeta-function and the derivative of Riemann's zeta-function. Finally, we investigate connections of the nontrivial zeros with the periodic zeta-function. On the basis of computation we derive several classifications of the nontrivial zeros of the Riemann zeta-function and stateproblems which mightbe ofinterestfor abetter understanding of the distribution of those zeros.


Symmetry ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2410
Author(s):  
Janyarak Tongsomporn ◽  
Saeree Wananiyakul ◽  
Jörn Steuding

In this paper, we prove an asymptotic formula for the sum of the values of the periodic zeta-function at the nontrivial zeros of the Riemann zeta-function (up to some height) which are symmetrical on the real line and the critical line. This is an extension of the previous results due to Garunkštis, Kalpokas, and, more recently, Sowa. Whereas Sowa’s approach was assuming the yet unproved Riemann hypothesis, our result holds unconditionally.


1967 ◽  
Vol 15 (4) ◽  
pp. 309-313 ◽  
Author(s):  
Bruce C. Berndt

The generalised zeta-function ζ(s, α) is defined bywhere α>0 and Res>l. Clearly, ζ(s, 1)=, where ζ(s) denotes the Riemann zeta-function. In this paper we consider a general class of Dirichlet series satisfying a functional equation similar to that of ζ(s). If ø(s) is such a series, we analogously define ø(s, α). We shall derive a representation for ø(s, α) which will be valid in the entire complex s-plane. From this representation we determine some simple properties of ø(s, α).


1978 ◽  
Vol 21 (1) ◽  
pp. 25-32 ◽  
Author(s):  
J. Knopfmacher

Let the Laurent expansion of the Riemann zeta function ξ(s) about s=1 be written in the formIt has been discovered independently by many authors that, in terms of this notation, the coefficient


2019 ◽  
Author(s):  
Sumit Kumar Jha

In this note, we give a new derivation for the fact that $\zeta(-r)=-\frac{B_{r+1}}{r+1}$ where $\zeta(s)$ represents the Riemann zeta function, and $B_{r}$ represents the Bernoulli numbers. Our proof uses the well-known explicit formula for the Bernoulli numbers in terms of the Stirling numbers of the second kind, and the Ramanujan's master theorem to obtain an integral representation for the Riemann zeta function.


Sign in / Sign up

Export Citation Format

Share Document