scholarly journals Non-invasive, Spatiotemporal Characterization of Muscle Activation Patterns from Vagus Nerve Stimulation in Human Subjects

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Maria Feucht ◽  
Matthew Ward

Background and Hypothesis: Vagus nerve stimulation (VNS) is used for treatment of epilepsy in over 100,000 patients worldwide and is a potential treatment for many inflammatory disorders. VNS-evoked compound nerve action potentials (CNAPs) may have applications as a biomarker of VNS treatment efficacy, but transcutaneous measurement of this activity is obscured by muscle artifacts. A more precise understanding of muscle activation patterns could improve recording and analysis protocols for isolating the vagus nerve (VN) CNAP. We hypothesize that analyzing multi-electrode array (MEA) surface recordings overlying the VN will allow us to characterize this muscle artifact.  Project Methods: Five patients undergoing VNS therapy for epilepsy were enrolled in a clinical study at Indiana University School of Medicine (IRB #2006075899). A custom-made MEA with a grid of 32 soft foam electrodes was placed on the skin overlying the VN on each side of the neck. Surface potentials were recorded for approximately 20 minutes at the patient’s established device settings. Results: VNS-evoked potentials were visualized in all five patients. Two probable muscle artifacts were identified, defined as non-propagating features in the mean response to n > 600 pulses of VNS. The first had an onset latency of ~1-3 ms, and the second had a latency of ~7-10 ms. Both artifacts appeared primarily in the electrodes overlying the laryngeal muscles. Conclusion and Potential Impact: The short latency of the first muscle artifact suggests stimulus signal leakage activating the superior laryngeal nerve. The second artifact with longer latency is likely caused by the recurrent laryngeal nerve. Previous analyses may have mischaracterized the first muscle artifact as nerve activity. The use of MEA-based recordings clarifies our understanding of the VN’s response to VNS, which may lead to better treatment efficacy and the eventual development of personalized VNS therapies for epilepsy and a range of inflammatory disorders.

Head & Neck ◽  
2012 ◽  
Vol 35 (11) ◽  
pp. 1591-1598 ◽  
Author(s):  
Rick Schneider ◽  
Gregory W. Randolph ◽  
Carsten Sekulla ◽  
Eimear Phelan ◽  
Phuong Nguyen Thanh ◽  
...  

2011 ◽  
Vol 253 (6) ◽  
pp. 1172-1177 ◽  
Author(s):  
Michael Brauckhoff ◽  
Andreas Machens ◽  
Carsten Sekulla ◽  
Kerstin Lorenz ◽  
Henning Dralle

2020 ◽  
Author(s):  
Evan N. Nicolai ◽  
Megan L. Settell ◽  
Bruce E. Knudsen ◽  
Andrea L. McConico ◽  
Brian A. Gosink ◽  
...  

AbstractClinical data suggest that efficacious vagus nerve stimulation (VNS) is limited by side effects such as cough and dyspnea that have stimulation thresholds lower than those for therapeutic outcomes. VNS side effects are putatively caused by activation of nearby muscles within the neck, via direct muscle activation or activation of nerve fibers innervating those muscles. Our goal was to determine the thresholds at which various VNS-evoked effects occur in the domestic pig—an animal model with vagus anatomy similar to human—using the bipolar helical lead deployed clinically. Intrafascicular electrodes were placed within the vagus nerve to record electroneurographic (ENG) responses, and needle electrodes were placed in the vagal-innervated neck muscles to record electromyographic (EMG) responses. Contraction of the cricoarytenoid muscle occurred at low amplitudes (∼0.3 mA) and resulted from activation of motor nerve fibers in the cervical vagus trunk within the electrode cuff which bifurcate into the recurrent laryngeal branch of the vagus. At higher amplitudes (∼1.4 mA), contraction of the cricoarytenoid and cricothyroid muscles was generated by current leakage outside the cuff to activate motor nerve fibers running within the nearby superior laryngeal branch of the vagus. Activation of these muscles generated artifacts in the ENG recordings that may be mistaken for compound action potentials representing slowly conducting Aδ-, B-, and C-fibers. Our data resolve conflicting reports of the stimulation amplitudes required for C-fiber activation in large animal studies (>10 mA) and human studies (<250 µA). After removing muscle-generated artifacts, ENG signals with post-stimulus latencies consistent with Aδ- and B-fibers occurred in only a small subset of animals, and these signals had similar thresholds to those that caused bradycardia. By identifying specific neuroanatomical pathways that cause off-target effects and characterizing the stimulation dose-response curves for on- and off-target effects, we hope to guide interpretation and optimization of clinical VNS.


2019 ◽  
Vol 28 (4) ◽  
pp. 1381-1387
Author(s):  
Ying Yuan ◽  
Jie Wang ◽  
Dongyu Wu ◽  
Dahua Zhang ◽  
Weiqun Song

Purpose Severe dysphagia with weak pharyngeal peristalsis after dorsal lateral medullary infarction (LMI) requires long-term tube feeding. However, no study is currently available on therapeutic effectiveness in severe dysphagia caused by nuclear damage of vagus nerve after dorsal LMI. The purpose of the present investigation was to explore the potential of transcutaneous vagus nerve stimulation (tVNS) to improve severe dysphagia with weak pharyngeal peristalsis after dorsal LMI. Method We assessed the efficacy of 6-week tVNS in a 28-year-old woman presented with persisting severe dysphagia after dorsal LMI who had been on nasogastric feeding for 6 months. tVNS was applied for 20 min twice a day, 5 days a week, for 6 weeks. The outcome measures included saliva spitted, Swallow Function Scoring System, Functional Oral Intake Scale, Clinical Assessment of Dysphagia With Wallenberg Syndrome, Yale Pharyngeal Residue Severity Rating Scale, and upper esophagus X-ray examination. Results After tVNS, the patient was advanced to a full oral diet without head rotation or spitting. No saliva residue was found in the valleculae and pyriform sinuses. Contrast medium freely passed through the upper esophageal sphincter. Conclusion Our findings suggest that tVNS might provide a useful means for recovery of severe dysphagia with weak pharyngeal peristalsis after dorsal LMI. Supplemental Material https://doi.org/10.23641/asha.9755438


2021 ◽  
Vol 3 (1) ◽  
pp. e14-e15
Author(s):  
Mark C Genovese ◽  
Yaakov A Levine ◽  
David Chernoff

Sign in / Sign up

Export Citation Format

Share Document