Inflammatory Disorders
Recently Published Documents





Ghassan Elourimi ◽  
Michael Soussan ◽  
Matthieu Groh ◽  
Antoine Martin ◽  
Francoise Héran ◽  

Emmanuel Ikechukwu Onwubuya ◽  
Henrietta Aritetsoma Ogbunugafor ◽  
Chike Samuel Okafor ◽  
Afees Adebayo Oladejo

Bryophyllum pinnatum (Lam.) Oken (Crassulaceae) is used traditionally to treat many ailments. This study investigated the anti-inflammatory effect of hydro-ethanol leaf extract of Bryophyllum pinnatum on Wistar rats using acute and chronic models and also evaluates the bioactive compounds of the leaf extract. The phytochemical constituents of the plant extract were quantitatively determined by Gas Chromatography-Flame Ionization Detector (GC-FID) and acute anti-inflammatory activity was carried out with the aid of plethysmometer while chronic anti-inflammatory activity was investigated using cotton pellet. Results showed that the leaf extract of B. pinnatum was rich in kaempferol (7.006 ±0.02 μg/g), sapogenin (3.372 ±0.02 μg/g), rutin (1.837 ±0.01 μg/g) and lunamarine (1.359 ±0.01 μg/g). The findings showed that the plant had considerable anti-inflammatory effects in a dose dependent manner, returning edema in carragenean-induced and cotton pellet induced granuloma in Wistar rats to normal within 120 minutes and 7 days respectively. The findings of this work have shown that the leaf of B. pinnatum was rich in bioactive compounds which could be synthesized to produce new plant based product to fight inflammatory disorders with fewer side effects.

Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1183
Sylvia Maina ◽  
Da Hye Ryu ◽  
Jwa Yeong Cho ◽  
Da Seul Jung ◽  
Jai-Eok Park ◽  

The effect of salt treatment on Brassica carinata (BC) microgreens grown under different light wavelengths on glucosinolates (GLs) and phenolic compounds were evaluated. Quantifiable GLs were identified using ultra-high performance-quadrupole time of flight mass spectrometry. Extracts’ ability to activate antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)) was evaluated on human colorectal carcinoma cells (HCT116). Furthermore, BC compounds’ ability to activate expression of nuclear transcription factor-erythroid 2 related factor (Nrf2) and heme-oxygenase-1 (HO-1) proteins was examined using specific antibodies on HCT116 cells. Sinigrin (SIN) was the abundant GLs of the six compounds identified and its content together with total aliphatic GLs increased in saline conditions. Fluorescent (FL) and blue plus red (B1R1) lights were identified as stable cultivation conditions for microgreens, promoting biomass and glucobrassicin contents, whereas other identified individual and total indole GLs behaved differently in saline and non-saline environments. Blue light-emitting diodes and FL light in saline treatments mostly enhanced SIN, phenolics and antioxidant activities. The increased SOD and CAT activities render the BC microgreens suitable for lowering oxidative stress. Additionally, activation of Nrf2, and HO-1 protein expression by the GLs rich extracts, demonstrate their potential to treat and prevent oxidative stress and inflammatory disorders. Therefore, effective salt treatments and light exposure to BC microgreens present an opportunity for targeted regulation of growth and accumulation of bioactive metabolites.

2021 ◽  
Xudong Wang ◽  
Xinguang Lin ◽  
Zhixin Wan ◽  
Shaohui Wang ◽  
Jiakun Zuo ◽  

Mammary gland-derived Escherichia coli ( E. coli ) is an important pathogen causing dairy cow mastitis. Mammary gland mucosal immunity against infectious E. coli mainly depends on recognition of pathogen-associated molecular patterns by innate receptors. Stimulator of interferon (IFN) gene (STING) has recently been the dominant mediator in reacting to bacterial intrusion and preventing inflammatory disorders. In this study, we firstly proved that diguanylate cyclase YeaJ relieves mouse mammary gland pathological damage by changing E. coli phenotypic and host STING-dependent innate immunity response. YeaJ decreases mammary gland circular vacuoles, bleeding and degeneration in mice. In addition, YeaJ participates in STING-IRF3 signaling to regulate inflammation in vivo . While in vitro , YeaJ decreases damage to macrophages (RAW264.7) but not to mouse mammary epithelial cells (EpH4-Ev). Consistent with the results in mouse mammary gland, yeaJ significantly activates STING/TBK1/IRF3 pathway in RAW264.7 as well. In conclusion, the deletion of yeaJ gene facilitates E. coli NJ17 escape from STING-dependent innate immunity recognition in vitro and in vivo . This study highlights a novel role for YeaJ in E. coli infection, which provides a better understanding of host-bacteria interactions and potential prophylactic strategies for infections. IMPORTANCE E. coli is the etiological agent of environmental mastitis in dairy cows, which cause massive financial losses worldwide. However, the pathophysiological role of yeaJ in the interaction between E. coli and host remains unclear. We found that YeaJ significantly influences various biological characteristics and suppresses severe inflammatory response as well as greater damage. YeaJ alleviates damage to macrophages (RAW264.7) and mouse mammary gland. Moreover, these effects of YeaJ are achieved at least partial by mediating the STING-IRF3 signaling pathway. In conclusion, the deletion of yeaJ gene facilitates E. coli NJ17 escape from STING-dependent innate immunity recognition in vitro and in vivo. This study is the basis for further research to better understand host-bacteria interactions and provides potential prophylactic strategies for infections.

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1882
Juliana Barreto de Albuquerque ◽  
Christoph Mueller ◽  
Bilgi Gungor

Tissue-resident memory T (TRM) cells critically contribute to the rapid immunoprotection and efficient immunosurveillance against pathogens, particularly in barrier tissues, but also during anti-tumor responses. However, the involvement of TRM cells also in the induction and exacerbation of immunopathologies, notably in chronically relapsing auto-inflammatory disorders, is becoming increasingly recognized as a critical factor. Thus, TRM cells may also represent an attractive target in the management of chronic (auto-) inflammatory disorders, including multiple sclerosis, rheumatoid arthritis, celiac disease and inflammatory bowel diseases. In this review, we focus on current concepts of TRM cell biology, particularly in the intestine, and discuss recent findings on their involvement in chronic relapsing–remitting inflammatory disorders. Potential therapeutic strategies to interfere with these TRM cell-mediated immunopathologies are discussed.

2021 ◽  
Vol 12 ◽  
Tongqian Wu ◽  
Lan Ma ◽  
Xiaoqian Jin ◽  
Jingjing He ◽  
Ke Chen ◽  

BackgroundThe calcium-binding protein S100A4 demonstrates important regulatory roles in many biological processes including tumorigenesis and inflammatory disorders such as allergy. However, the specific mechanism of the contribution of S100A4 to allergic diseases awaits further clarification.ObjectiveTo address the effect of S100A4 on the regulation of mast cell activation and its impact on allergy.MethodsBone marrow-derived cultured mast cells (BMMCs) were derived from wild-type (WT) or S100A4-/- mice for in vitro investigation. WT and S100A4-/- mice were induced to develop a passive cutaneous anaphylaxis (PCA) model, a passive systemic anaphylaxis (PSA) model, and an ovalbumin (OVA)-mediated mouse asthma model.ResultsFollowing OVA/alum-based sensitization and provocation, S100A4-/- mice demonstrated overall suppressed levels of serum anti-OVA IgE and IgG antibodies and proinflammatory cytokines in serum, bronchoalveolar lavage fluid (BALF), and lung exudates. S100A4-/- mice exhibited less severe asthma signs which included inflammatory cell infiltration in the lung tissue and BALF, and suppressed mast cell recruitment in the lungs. Reduced levels of antigen reencounter-induced splenocyte proliferation in vitro were recorded in splenocytes from OVA-sensitized and challenged mice that lacked S100A4-/-. Furthermore, deficiency in the S100A4 gene could dampen mast cell activation both in vitro and in vivo, evidenced by reduced β-hexosaminidase release and compromised PCA and PSA reaction. We also provided evidence supporting the expression of S100A4 by mast cells.ConclusionS100A4 is required for mast cell functional activation, and S100A4 may participate in the regulation of allergic responses at least partly through regulating the activation of mast cells.

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1860
Leszek Roszkowski ◽  
Marzena Ciechomska

Monocytes/macrophages play a central role in chronic inflammatory disorders, including rheumatoid arthritis (RA). Activation of these cells results in the production of various mediators responsible for inflammation and RA pathogenesis. On the other hand, the depletion of macrophages using specific antibodies or chemical agents can prevent their synovial tissue infiltration and subsequently attenuates inflammation. Their plasticity is a major feature that helps the switch from a pro-inflammatory phenotype (M1) to an anti-inflammatory state (M2). Therefore, understanding the precise strategy targeting pro-inflammatory monocytes/macrophages should be a powerful way of inhibiting chronic inflammation and bone erosion. In this review, we demonstrate potential consequences of different epigenetic regulations on inflammatory cytokines production by monocytes. In addition, we present unique profiles of monocytes/macrophages contributing to identification of new biomarkers of disease activity or predicting treatment response in RA. We also outline novel approaches of tuning monocytes/macrophages by biologic drugs, small molecules or by other therapeutic modalities to reduce arthritis. Finally, the importance of cellular heterogeneity of monocytes/macrophages is highlighted by single-cell technologies, which leads to the design of cell-specific therapeutic protocols for personalized medicine in RA in the future.

2021 ◽  
Vol 9 (8) ◽  
pp. 1553
Ruozhi Zhao ◽  
Fei Huang ◽  
Garry X. Shen

Administration of freeze-dried powder of Saskatoon berry (SB), a popular fruit enriched with antioxidants, reduced glucose level, inflammatory markers and gut microbiota disorder in high fat-high sucrose (HFHS) diet-induced insulin resistant mice. The present study examined the dose-response relationship in metabolic, inflammatory and gut microbiotic variables to SB power (SBp) supplementation in HFHS diet-fed mice. Male C57 BL/6J mice were fed with HFHS diet supplemented with 0, 1%, 2.5% or 5% SBp for 11 weeks. HFHS diet significantly increased the levels of fast plasma glucose (FPG), cholesterol, triglycerides, insulin, homeostatic model assessment of insulin resistance (HOMA-IR), tumor necrosis factor-α, monocyte chemotactic protein-1 and plasminogen activator inhibitor-1, but decreased fecal Bacteroidetes phylum bacteria and Muribaculaceae family bacteria compared to low fat diet. SBp dose-dependently reduced metabolic and inflammatory variables and gut dysbiosis in mice compared with mice receiving HFHS diet alone. Significant attenuation of HFHS diet-induced biochemical disorders were detected in mice receiving ≥1% SBp. The abundances of Muribaculaceae family bacteria negatively correlated with body weights, FPG, lipids, insulin, HOMA-IR and inflammatory markers in the mice. The results suggest that SBp supplementation dose-dependently attenuated HFHS diet-induced metabolic and inflammatory disorders, which was associated with the amelioration of gut dysbiosis in the mice.

2021 ◽  
Vol 9 ◽  
Prasanna Venkatesh Ramachandran ◽  
C. Mary Healy ◽  
Elton M. Lambert ◽  
Deyanara Guerra ◽  
Choladda V. Curry ◽  

Elevated immunoglobulin E (IgE) levels can be associated with infectious, allergic and inflammatory disorders, and rarely as a manifestation of an inborn error of immunity. Here we report the case of an adolescent female who presented with a gradually enlarging neck mass, lymphadenopathy, eosinophilia and highly elevated IgE levels. Laboratory and histopathologic evaluation revealed an unlikely diagnosis of Kimura Disease. We discuss the differential diagnosis of a neck mass with prominent eosinophils on histology, and review support for T-helper type 2 (Th2) cell activation and hyper-IgE in Kimura Disease.

Export Citation Format

Share Document