Dynamic Mass Loss from Greenland’s Marine-Terminating Peripheral Glaciers

Author(s):  
Ellyn M. Enderlin ◽  
Katherine Bollen ◽  
Rebecca Muhlheim
Keyword(s):  
Author(s):  
Katherine Bollen ◽  
Ellyn Enderlin ◽  
Rebecca Muhlheim
Keyword(s):  

2015 ◽  
Vol 56 (70) ◽  
pp. 105-117 ◽  
Author(s):  
William Colgan ◽  
Jason E. Box ◽  
Morten L. Andersen ◽  
Xavier Fettweis ◽  
Beáta Csathó ◽  
...  

AbstractWe revisit the input–output mass budget of the high-elevation region of the Greenland ice sheet evaluated by the Program for Arctic Regional Climate Assessment (PARCA). Our revised reference period (1961–90) mass balance of 54±48 Gt a–1 is substantially greater than the 0±21 Gt a–1 assessed by PARCA, but consistent with a recent, fully independent, input–output estimate of high-elevation mass balance (41±61 Gt a–1). Together these estimates infer a reference period high-elevation specific mass balance of 4.8±5.4 cm w.e. a–1. The probability density function (PDF) associated with this combined input–output estimate infers an 81% likelihood of high-elevation specific mass balance being positive (>0 cm w.e. a–1) during the reference period, and a 70% likelihood that specific balance was >2 cm w.e. a–1. Given that reference period accumulation is characteristic of centurial and millennial means, and that in situ mass-balance observations exhibit a dependence on surface slope rather than surface mass balance, we suggest that millennial-scale ice dynamics are the primary driver of subtle reference period high-elevation mass gain. Failure to acknowledge subtle reference period dynamic mass gain can result in underestimating recent dynamic mass loss by ~17%, and recent total Greenland mass loss by ~7%.


2020 ◽  
Author(s):  
Pauline Bonnet ◽  
Vladislav Yastrebov ◽  
Alban Leroyer ◽  
Patrick Queutey ◽  
Anne Mangeney ◽  
...  

<p>One current concern in climate science is the estimations of the amount of ice loss by glaciers each year and the corresponding rate of sea level rise. Greenland ice sheet contribution is significant with about 30% to the global ice mass losses. Ice loss in Greenland is distributed approximately equally between loss in land by surface melting and loss at the front of marine-terminating glaciers that is modulated by dynamic processes. Dynamic mass loss includes both submarine melting and iceberg calving. The processes that control ablation at tidewater glacier termini, glacier retreat and calving are complex, setting the limits to the estimation of dynamic mass loss and the relation to glacier dynamics. It involves interactions between bedrock – glaciers – icebergs – ice-mélange – water – atmosphere. Moreover, the capsize of cubic kilometer scale icebergs close to a glacier front can destabilize the glacier, generate tsunami waves, and induce mixing of the water column which can impact both the local fauna and flora.</p><p>We aim to improve the understanding of iceberg capsize using a mechanical modeling of iceberg rotation against the glacier terminus, constrained by the generated seismic waves that are recorded at teleseismic distances. To achieve this objective, we develop a fluid-structure interaction model for the capsizing iceberg. Full scale fluid-structure interaction models enable accurate simulation of complex fluid flows in presence of rigid or deformable solids and in presence of free surfaces. However, such models are computationally very expensive. Therefore, our strategy is to construct a simple solid dynamics model involving contact and friction, whose simplified interaction with water is governed by parametrized forces and moments. We fine tune these parametrized effects on an iceberg capsizing in contact with a glacier with the help of reference direct numerical simulations of fluid-structure interactions involving full resolution of Navier-Stokes equations. We assess the sensitivity of the glacier dynamics to the glacier-bedrock friction law and the conditions for triggering a stick-slip motion of the glacier due to iceberg capsize. The seismogenic sources of the capsizing iceberg in contact with a glacier simulated with our model are then compared to the recorded seismic signals for well documented events.</p>


2000 ◽  
Vol 33 (23) ◽  
pp. 3073-3077
Author(s):  
E M Drobyshevski ◽  
R O Kurakin ◽  
S I Rozov ◽  
B G Zhukov ◽  
M V Beloborodyy ◽  
...  
Keyword(s):  

1969 ◽  
Vol 35 ◽  
pp. 71-74 ◽  
Author(s):  
Dirk Van As ◽  
Robert S. Fausto ◽  
John Cappelen ◽  
Roderik S.W.l Van de Wa ◽  
Roger J. Braithwaite ◽  
...  

In recent years, the Greenland ice sheet has been losing mass at an average rate of 262 ± 21 Gt yr–1 (2007–2011; Andersen et al. 2015). Part of this mass loss was due to increases in melt, reducing the surface mass budget (Enderlin et al. 2014). Also, the acceleration of many marine-terminating outlet glaciers increased the dynamic mass loss (Rignot et al. 2008). Both mass-loss mechanisms are linked to recent increases in atmospheric and oceanic temperatures (Dutton et al. 2015). For instance, in summer 2012 Greenland experienced exceptionally warm atmospheric conditions, causing nearly the entire ice-sheet surface to melt for two periods of several days (Nghiem et al. 2012) and contributing to the largest annual ice-sheet mass loss on record (Khan et al. 2015). This is in contrast to a return to more average conditions in 2015 (Tedesco et al. in press).


2019 ◽  
Author(s):  
Andrea Walter ◽  
Martin P. Lüthi ◽  
Andreas Vieli

Abstract. Calving is a crucial process for the recently observed dynamic mass loss changes of the Greenland ice sheet. Despite its importance for global sea level change, major limitations in understanding the calving process remain. This study presents calving event data and statistics recorded with a terrestrial radar interferometer at the front of Eqip Sermia, a marine terminating outlet glacier in Greenland. The data with a spatial resolution of several meters recorded at one-minute intervals was processed to provide source areas and volumes of 1700 individual calving events during a 6 day period. The calving front can be divided into sectors ending in shallow and deep water with different calving statistics and style. For the shallow sector, characterised by an inclined and very high front, calving events are more frequent and larger than for the vertical ice cliff of the deep sector. We suggest that the calving volume missing in our observations of the deep sector is removed by oceanic melt and subaquatic calving, which implies that subaqueous mass loss must be substantial for this sector with a contribution of up to 75 % to the frontal mass loss. The size distribution of the deep sector follows a power law, while the shallow sector is likely represented by a log-normal model. Variations in calving activity and style within the sectors seem to be controlled by the bed topography and the front geometry. Within the short observation period no clear relationship between environmental forcings and calving frequency or event volume could be detected.


Sign in / Sign up

Export Citation Format

Share Document