outlet glacier
Recently Published Documents


TOTAL DOCUMENTS

338
(FIVE YEARS 82)

H-INDEX

42
(FIVE YEARS 5)

2021 ◽  
Author(s):  
◽  
Ross Whitmore

<p>Terrestrial cosmogenic exposure studies are an established and rapidly evolving tool for landscapes in both polar and non-polar regions. This thesis takes a multifaceted approach to utilizing and enhancing terrestrial cosmogenic methods. The three main components of this work address method development, reconstructing surface-elevation-changes in two large Antarctic outlet glaciers, and evaluating bedrock erosion rates in Victoria Land, Antarctica. Each facet of this work is intended to enhance its respective field, as well as benefit the other sections of this thesis. Quartz purification is a necessary and critical step to producing robust and reproducible results in terrestrial cosmogenic nuclide studies. Previous quartz purification work has centred on relatively coarse sample material (1 mm-500 μm) and is effective down to 125 μm. However, sample material finer than that poses significant purification challenges and this material is usually discarded. The new purification procedure outlined in this thesis shows that very fine sand size material (125-63 μm) can be reliably cleaned for use in terrestrial cosmogenic nuclide studies. The results below show that 35% mass loss in very fine-grained quartz is sufficient to remove major elements (Al, Ti, Na, K, Fe, Mg, Ca, Mn,) and trace elements (9Be, and 10B) along with meteoric 10Be. Insufficient leaching is most detrimental to Al concentration, however errors up to 27% in exposure age and up to 29% in erosion rate are possible if meteoric 10Be is not fully removed from quartz during the HF leaching stages. Outlet glaciers have been well observed since the beginning of the satellite era, approximately 60 years ago. However, we do not currently know how these important glaciers, which drain a significant portion of the Antarctic Ice Sheet, have behaved on centennial to millennial timescales. Dating glacial erratics deposited by a thinning outlet glacier provides a window into the long-term outlet glacier and ice sheet response to climatic forcing. New results in this thesis constrain the thinning history of Mawson and Tucker glaciers over the last several thousand years. Mawson Glacier undergoes rapid thinning from at least ~6.5 kya to ~4.9 kya then transitions to slower thinning until ~1 kya, with a minimum of 250 m of ice-surface-lowering. While Tucker Glacier ~450 km north undergoes gradual thinning from ~19 kya to ~5 kya with ~300 m of ice-surface-lowering. The results of this work show that either the Tucker Glacier was not significantly affected by the Ross Ice Shelf grounding line, or that Antarctic mountain glaciers respond differently to the outlet glaciers connected to the Easty Antarctic Ice Sheet. The style, rate, magnitude, and duration of thinning is unique to each outlet glacier, even with similar climate forcing. The results of this work shed light on the style and duration of outlet glacier thinning and retreat that is possible following a climate perturbation. Antarctica’s average bedrock erosion rate is consistently lower than 4.5 m/Myr, the lowest bedrock erosion rates for any region on Earth. Therefore, many cosmogenic dating studies assume zero erosion when calculating exposure ages. However, previous erosion rate work in Antarctica is biased to arid high-elevation inland sites (~60% of work) and the hyperarid ice-free McMurdo Dry Valleys (~40% of work). These studies do not capture the effects of coastal maritime climates, where many outlet glacier studies are conducted, on the rate of bedrock erosion. New results presented in this thesis show that the Northern Victoria Land coast has the highest known erosion rate in Antarctica. Two sample sites were selected, one coastal and one in the interior. The coastal bedrock erosion rates are 8.86±0.78 m/Myr and 7.15±0.6 m/Myr while the interior bedrock erosion rates are 1.07±0.08 m/Myr and 0.42±0.03 m/Myr. The coastal erosion rates are average for non-polar cold climates while the inland sites are below average for polar erosion rates. The results suggest a strong gradient in the rate of erosion is present from the Antarctic coastline inland. If exposure ages are not calculated with an appropriate erosion rate the apparent age may under-estimate the actual age by as much as 12%, which is thousands of years for Holocene thinning histories like those found in this thesis.</p>


2021 ◽  
Author(s):  
◽  
Ross Whitmore

<p>Terrestrial cosmogenic exposure studies are an established and rapidly evolving tool for landscapes in both polar and non-polar regions. This thesis takes a multifaceted approach to utilizing and enhancing terrestrial cosmogenic methods. The three main components of this work address method development, reconstructing surface-elevation-changes in two large Antarctic outlet glaciers, and evaluating bedrock erosion rates in Victoria Land, Antarctica. Each facet of this work is intended to enhance its respective field, as well as benefit the other sections of this thesis. Quartz purification is a necessary and critical step to producing robust and reproducible results in terrestrial cosmogenic nuclide studies. Previous quartz purification work has centred on relatively coarse sample material (1 mm-500 μm) and is effective down to 125 μm. However, sample material finer than that poses significant purification challenges and this material is usually discarded. The new purification procedure outlined in this thesis shows that very fine sand size material (125-63 μm) can be reliably cleaned for use in terrestrial cosmogenic nuclide studies. The results below show that 35% mass loss in very fine-grained quartz is sufficient to remove major elements (Al, Ti, Na, K, Fe, Mg, Ca, Mn,) and trace elements (9Be, and 10B) along with meteoric 10Be. Insufficient leaching is most detrimental to Al concentration, however errors up to 27% in exposure age and up to 29% in erosion rate are possible if meteoric 10Be is not fully removed from quartz during the HF leaching stages. Outlet glaciers have been well observed since the beginning of the satellite era, approximately 60 years ago. However, we do not currently know how these important glaciers, which drain a significant portion of the Antarctic Ice Sheet, have behaved on centennial to millennial timescales. Dating glacial erratics deposited by a thinning outlet glacier provides a window into the long-term outlet glacier and ice sheet response to climatic forcing. New results in this thesis constrain the thinning history of Mawson and Tucker glaciers over the last several thousand years. Mawson Glacier undergoes rapid thinning from at least ~6.5 kya to ~4.9 kya then transitions to slower thinning until ~1 kya, with a minimum of 250 m of ice-surface-lowering. While Tucker Glacier ~450 km north undergoes gradual thinning from ~19 kya to ~5 kya with ~300 m of ice-surface-lowering. The results of this work show that either the Tucker Glacier was not significantly affected by the Ross Ice Shelf grounding line, or that Antarctic mountain glaciers respond differently to the outlet glaciers connected to the Easty Antarctic Ice Sheet. The style, rate, magnitude, and duration of thinning is unique to each outlet glacier, even with similar climate forcing. The results of this work shed light on the style and duration of outlet glacier thinning and retreat that is possible following a climate perturbation. Antarctica’s average bedrock erosion rate is consistently lower than 4.5 m/Myr, the lowest bedrock erosion rates for any region on Earth. Therefore, many cosmogenic dating studies assume zero erosion when calculating exposure ages. However, previous erosion rate work in Antarctica is biased to arid high-elevation inland sites (~60% of work) and the hyperarid ice-free McMurdo Dry Valleys (~40% of work). These studies do not capture the effects of coastal maritime climates, where many outlet glacier studies are conducted, on the rate of bedrock erosion. New results presented in this thesis show that the Northern Victoria Land coast has the highest known erosion rate in Antarctica. Two sample sites were selected, one coastal and one in the interior. The coastal bedrock erosion rates are 8.86±0.78 m/Myr and 7.15±0.6 m/Myr while the interior bedrock erosion rates are 1.07±0.08 m/Myr and 0.42±0.03 m/Myr. The coastal erosion rates are average for non-polar cold climates while the inland sites are below average for polar erosion rates. The results suggest a strong gradient in the rate of erosion is present from the Antarctic coastline inland. If exposure ages are not calculated with an appropriate erosion rate the apparent age may under-estimate the actual age by as much as 12%, which is thousands of years for Holocene thinning histories like those found in this thesis.</p>


2021 ◽  
Vol 15 (12) ◽  
pp. 5447-5471
Author(s):  
Jamey Stutz ◽  
Andrew Mackintosh ◽  
Kevin Norton ◽  
Ross Whitmore ◽  
Carlo Baroni ◽  
...  

Abstract. Quantitative satellite observations only provide an assessment of ice sheet mass loss over the last four decades. To assess long-term drivers of ice sheet change, geological records are needed. Here we present the first millennial-scale reconstruction of David Glacier, the largest East Antarctic outlet glacier in Victoria Land. To reconstruct changes in ice thickness, we use surface exposure ages of glacial erratics deposited on nunataks adjacent to fast-flowing sections of David Glacier. We then use numerical modelling experiments to determine the drivers of glacial thinning. Thinning profiles derived from 45 10Be and 3He surface exposure ages show David Glacier experienced rapid thinning of up to 2 m/yr during the mid-Holocene (∼ 6.5 ka). Thinning slowed at 6 ka, suggesting the initial formation of the Drygalski Ice Tongue at this time. Our work, along with ice thinning records from adjacent glaciers, shows simultaneous glacier thinning in this sector of the Transantarctic Mountains occurred 4–7 kyr after the peak period of ice thinning indicated in a suite of published ice sheet models. The timing and rapidity of the reconstructed thinning at David Glacier is similar to reconstructions in the Amundsen and Weddell embayments. To identify the drivers of glacier thinning along the David Glacier, we use a glacier flowline model designed for calving glaciers and compare modelled results against our geological data. We show that glacier thinning and marine-based grounding-line retreat are controlled by either enhanced sub-ice-shelf melting, reduced lateral buttressing or a combination of the two, leading to marine ice sheet instability. Such rapid glacier thinning events during the mid-Holocene are not fully captured in continental- or catchment-scale numerical modelling reconstructions. Together, our chronology and modelling identify and constrain the drivers of a ∼ 2000-year period of dynamic glacier thinning in the recent geological past.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Julia Christmann ◽  
Veit Helm ◽  
Shfaqat Abbas Khan ◽  
Thomas Kleiner ◽  
Ralf Müller ◽  
...  

AbstractFuture projections of global mean sea level change are uncertain, partly because of our limited understanding of the dynamics of Greenland’s outlet glaciers. Here we study Nioghalvfjerdsbræ, an outlet glacier of the Northeast Greenland Ice Stream that holds 1.1 m sea-level equivalent of ice. We use GPS observations and numerical modelling to investigate the role of tides as well as the elastic contribution to glacier flow. We find that ocean tides alter the basal lubrication of the glacier up to 10 km inland of the grounding line, and that their influence is best described by a viscoelastic rather than a viscous model. Further inland, sliding is the dominant mechanism of fast glacier motion, and the ice flow induces persistent elastic strain. We conclude that elastic deformation plays a role in glacier flow, particularly in areas of steep topographic changes and fast ice velocities.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tancrède P. M. Leger ◽  
Andrew S. Hein ◽  
Daniel Goldberg ◽  
Irene Schimmelpfennig ◽  
Maximillian S. Van Wyk de Vries ◽  
...  

The last glacial termination was a key event during Earth’s Quaternary history that was associated with rapid, high-magnitude environmental and climatic change. Identifying its trigger mechanisms is critical for understanding Earth’s modern climate system over millennial timescales. It has been proposed that latitudinal shifts of the Southern Hemisphere Westerly Wind belt and the coupled Subtropical Front are important components of the changes leading to global deglaciation, making them essential to investigate and reconstruct empirically. The Patagonian Andes are part of the only continental landmass that fully intersects the Southern Westerly Winds, and thus present an opportunity to study their former latitudinal migrations through time and to constrain southern mid-latitude palaeo-climates. Here we use a combination of geomorphological mapping, terrestrial cosmogenic nuclide exposure dating and glacial numerical modelling to reconstruct the late-Last Glacial Maximum (LGM) behaviour and surface mass balance of two mountain glaciers of northeastern Patagonia (43°S, 71°W), the El Loro and Río Comisario palaeo-glaciers. In both valleys, we find geomorphological evidence of glacier advances that occurred after the retreat of the main ice-sheet outlet glacier from its LGM margins. We date the outermost moraine in the El Loro valley to 18.0 ± 1.15 ka. Moreover, a series of moraine-matching simulations were run for both glaciers using a spatially-distributed ice-flow model coupled with a positive degree-day surface mass balance parameterisation. Following a correction for cumulative local surface uplift resulting from glacial isostatic adjustment since ∼18 ka, which we estimate to be ∼130 m, the glacier model suggests that regional mean annual temperatures were between 1.9 and 2.8°C lower than present at around 18.0 ± 1.15 ka, while precipitation was between ∼50 and ∼380% higher than today. Our findings support the proposed equatorward migration of the precipitation-bearing Southern Westerly Wind belt towards the end of the LGM, between ∼19.5 and ∼18 ka, which caused more humid conditions towards the eastern margins of the northern Patagonian Ice Sheet a few centuries ahead of widespread deglaciation across the cordillera.


2021 ◽  
pp. 1-17
Author(s):  
Samuel J. Cook ◽  
Poul Christoffersen ◽  
Joe Todd

Abstract We present the first fully coupled 3D full-Stokes model of a tidewater glacier, incorporating ice flow, subglacial hydrology, plume-induced frontal melting and calving. We apply the model to Store Glacier (Sermeq Kujalleq) in west Greenland to simulate a year of high melt (2012) and one of low melt (2017). In terms of modelled hydrology, we find perennial channels extending 5 km inland from the terminus and up to 41 and 29 km inland in summer 2012 and 2017, respectively. We also report a hydrodynamic feedback that suppresses channel growth under thicker ice inland and allows water to be stored in the distributed system. At the terminus, we find hydrodynamic feedbacks exert a major control on calving through their impact on velocity. We show that 2012 marked a year in which Store Glacier developed a fully channelised drainage system, unlike 2017, where it remained only partially developed. This contrast in modelled behaviour indicates that tidewater glaciers can experience a strong hydrological, as well as oceanic, control, which is consistent with observations showing glaciers switching between types of behaviour. The fully coupled nature of the model allows us to demonstrate the likely lack of any hydrological or ice-dynamic memory at Store Glacier.


2021 ◽  
Author(s):  
Sophie Goliber ◽  
Taryn Black ◽  
Ginny Catania ◽  
James M. Lea ◽  
Helene Olsen ◽  
...  

Abstract. Marine-terminating outlet glacier terminus traces, mapped from satellite and aerial imagery, have been used extensively in understanding how outlet glaciers adjust to climate change variability over a range of time scales. Numerous studies have digitized termini manually, but this process is labor-intensive, and no consistent approach exists. A lack of coordination leads to duplication of efforts, particularly for Greenland, which is a major scientific research focus. At the same time, machine learning techniques are rapidly making progress in their ability to automate accurate extraction of glacier termini, with promising developments across a number of optical and SAR satellite sensors. These techniques rely on high quality, manually digitized terminus traces to be used as training data for robust automatic traces. Here we present a database of manually digitized terminus traces for machine learning and scientific applications. These data have been collected, cleaned, assigned with appropriate metadata including image scenes, and compiled so they can be easily accessed by scientists. The TermPicks data set includes 39,060 individual terminus traces for 278 glaciers with a mean and median number of traces per glacier of 136 ± 190 and 93, respectively. Across all glaciers, 32,567 dates have been picked, of which 4,467 have traces from more than one author (duplication of 14 %). We find a median error of ∼100 m among manually-traced termini. Most traces are obtained after 1999, when Landsat 7 was launched. We also provide an overview of an updated version of The Google Earth Engine Digitization Tool (GEEDiT), which has been developed specifically for future manual picking of the Greenland Ice Sheet.


2021 ◽  
Vol 9 (5) ◽  
pp. 1363-1380
Author(s):  
Melisa A. Diaz ◽  
Lee B. Corbett ◽  
Paul R. Bierman ◽  
Byron J. Adams ◽  
Diana H. Wall ◽  
...  

Abstract. Outlet glaciers that flow through the Transantarctic Mountains (TAM) experienced changes in ice thickness greater than other coastal regions of Antarctica during glacial maxima. As a result, ice-free areas that are currently exposed may have been covered by ice at various points during the Cenozoic, complicating our understanding of ecological succession in TAM soils. Our knowledge of glacial extent on small spatial scales is limited for the TAM, and studies of soil exposure duration and disturbance, in particular, are rare. We collected surface soil samples and, in some places, depth profiles every 5 cm to refusal (up to 30 cm) from 11 ice-free areas along Shackleton Glacier, a major outlet glacier of the East Antarctic Ice Sheet. We explored the relationship between meteoric 10Be and NO3- in these soils as a tool for understanding landscape disturbance and wetting history and as exposure proxies. Concentrations of meteoric 10Be spanned more than an order of magnitude across the region (2.9×108 to 73×108 atoms g−1) and are among the highest measured in polar regions. The concentrations of NO3- were similarly variable and ranged from ∼1 µg g−1 to 15 mg g−1. In examining differences and similarities in the concentrations of 10Be and NO3- with depth, we suggest that much of the southern portion of the Shackleton Glacier region has likely developed under a hyper-arid climate regime with minimal disturbance. Finally, we inferred exposure time using 10Be concentrations. This analysis indicates that the soils we analyzed likely range from recent exposure (following the Last Glacial Maximum) to possibly >6 Myr. We suggest that further testing and interrogation of meteoric 10Be and NO3- concentrations and relationships in soils can provide important information regarding landscape development, soil evolution processes, and inferred exposure durations of surfaces in the TAM.


2021 ◽  
Author(s):  
Samuel Cook ◽  
Poul Christoffersen ◽  
Joe Todd

We present the first fully coupled 3D full-Stokes model of a tidewater glacier, incorporating ice flow, subglacial hydrology, plume-induced frontal melting and calving. We apply the model to Store Glacier (Sermeq Kujalleq) in west Greenland to simulate a year of high melt (2012) and one of low melt (2017). In terms of modelled hydrology, we find perennial channels extending 5 km inland fromthe terminus and up to 41 km and 29 km inland in summer 2012 and 2017, respectively. We also report a hydrodynamic feedback that suppresses channel growth under thicker ice inland and allows water to be stored in the distributed system. At the terminus, we find hydrodynamic feedbacks exert a major control on calving through their impact on velocity. We show that 2012 marked a year inwhich Store Glacier developed a fully channelised drainage system, unlike 2017, where it remained only partially developed. This contrast in modelled behaviour indicates that tidewater glaciers can experience a strong hydrological, as well as oceanic, control, which is consistent with observations showing glaciers switching between seemingly dominant types. The fully coupled nature of the model allows us to demonstrate the likely lack of any hydrological or ice-dynamic memory at Store.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Joshuah Wolper ◽  
Ming Gao ◽  
Martin P. Lüthi ◽  
Valentin Heller ◽  
Andreas Vieli ◽  
...  

AbstractGlaciers calving icebergs into the ocean significantly contribute to sea-level rise and can trigger tsunamis, posing severe hazards for coastal regions. Computational modeling of such multiphase processes is a great challenge involving complex solid–fluid interactions. Here, a new continuum damage Material Point Method has been developed to model dynamic glacier fracture under the combined effects of gravity and buoyancy, as well as the subsequent propagation of tsunami-like waves induced by released icebergs. We reproduce the main features of tsunamis obtained in laboratory experiments as well as calving characteristics, the iceberg size, tsunami amplitude and wave speed measured at Eqip Sermia, an ocean-terminating outlet glacier of the Greenland ice sheet. Our hybrid approach constitutes important progress towards the modeling of solid–fluid interactions, and has the potential to contribute to refining empirical calving laws used in large-scale earth-system models as well as to improve hazard assessments and mitigation measures in coastal regions, which is essential in the context of climate change.


Sign in / Sign up

Export Citation Format

Share Document