scholarly journals Forecasting Household Electricity Consumption Using Time Series Models

2021 ◽  
Vol 11 (6) ◽  
pp. 380-386
Author(s):  
Patcharakorn Sokannit ◽  
2017 ◽  
Vol 15 (3) ◽  
pp. 457
Author(s):  
Mirjana Laković ◽  
Ivan Pavlović ◽  
Miloš Banjac ◽  
Milica Jović ◽  
Marko Mančić

Electricity is a key energy source in each country and an important condition for economic development. It is necessary to use modern methods and tools to predict energy consumption for different types of systems and weather conditions. In every industrial plant, electricity consumption presents one of the greatest operating costs. Monitoring and forecasting of this parameter provide the opportunity to rationalize the use of electricity and thus significantly reduce the costs. The paper proposes the prediction of energy consumption by a new time-series model. This involves time series models using a set of previously collected data to predict the future load. The most commonly used linear time series models are the AR (Autoregressive Model), MA (Moving Average) and ARMA (Autoregressive Moving Average Model). The AR model is used in this paper. Using the AR (Autoregressive Model) model, the Monte Carlo simulation method is utilized for predicting and analyzing the energy consumption change in the considered tobacco industrial plant. One of the main parts of the AR model is a seasonal pattern that takes into account the climatic conditions for a given geographical area. This part of the model was delineated by the Fourier transform and was used with the aim of avoiding the model complexity. As an example, the numerical results were performed for tobacco production in one industrial plant. A probabilistic range of input values is used to determine the future probabilistic level of energy consumption.


Marketing ZFP ◽  
2010 ◽  
Vol 32 (JRM 1) ◽  
pp. 24-29
Author(s):  
Marnik G. Dekimpe ◽  
Dominique M. Hanssens

2020 ◽  
Vol 5 (1) ◽  
pp. 374
Author(s):  
Pauline Jin Wee Mah ◽  
Nur Nadhirah Nanyan

The main purpose of this study is to compare the performances of univariate and bivariate models on four time series variables of the crude palm oil industry in Peninsular Malaysia. The monthly data for the four variables, which are the crude palm oil production, price, import and export, were obtained from Malaysian Palm Oil Board (MPOB) and Malaysian Palm Oil Council (MPOC). In the first part of this study, univariate time series models, namely, the autoregressive integrated moving average (ARIMA), fractionally integrated autoregressive moving average (ARFIMA) and autoregressive autoregressive (ARAR) algorithm were used for modelling and forecasting purposes. Subsequently, the dependence between any two of the four variables were checked using the residuals’ sample cross correlation functions before modelling the bivariate time series. In order to model the bivariate time series and make prediction, the transfer function models were used. The forecast accuracy criteria used to evaluate the performances of the models were the mean absolute error (MAE), root mean square error (RMSE) and mean absolute percentage error (MAPE). The results of the univariate time series showed that the best model for predicting the production was ARIMA  while the ARAR algorithm were the best forecast models for predicting both the import and export of crude palm oil. However, ARIMA  appeared to be the best forecast model for price based on the MAE and MAPE values while ARFIMA  emerged the best model based on the RMSE value.  When considering bivariate time series models, the production was dependent on import while the export was dependent on either price or import. The results showed that the bivariate models had better performance compared to the univariate models for production and export of crude palm oil based on the forecast accuracy criteria used.


Sign in / Sign up

Export Citation Format

Share Document