A COMPARATIVE STUDY BETWEEN UNIVARIATE AND BIVARIATE TIME SERIES MODELS FOR CRUDE PALM OIL INDUSTRY IN PENINSULAR MALAYSIA

2020 ◽  
Vol 5 (1) ◽  
pp. 374
Author(s):  
Pauline Jin Wee Mah ◽  
Nur Nadhirah Nanyan

The main purpose of this study is to compare the performances of univariate and bivariate models on four time series variables of the crude palm oil industry in Peninsular Malaysia. The monthly data for the four variables, which are the crude palm oil production, price, import and export, were obtained from Malaysian Palm Oil Board (MPOB) and Malaysian Palm Oil Council (MPOC). In the first part of this study, univariate time series models, namely, the autoregressive integrated moving average (ARIMA), fractionally integrated autoregressive moving average (ARFIMA) and autoregressive autoregressive (ARAR) algorithm were used for modelling and forecasting purposes. Subsequently, the dependence between any two of the four variables were checked using the residuals’ sample cross correlation functions before modelling the bivariate time series. In order to model the bivariate time series and make prediction, the transfer function models were used. The forecast accuracy criteria used to evaluate the performances of the models were the mean absolute error (MAE), root mean square error (RMSE) and mean absolute percentage error (MAPE). The results of the univariate time series showed that the best model for predicting the production was ARIMA  while the ARAR algorithm were the best forecast models for predicting both the import and export of crude palm oil. However, ARIMA  appeared to be the best forecast model for price based on the MAE and MAPE values while ARFIMA  emerged the best model based on the RMSE value.  When considering bivariate time series models, the production was dependent on import while the export was dependent on either price or import. The results showed that the bivariate models had better performance compared to the univariate models for production and export of crude palm oil based on the forecast accuracy criteria used.

2018 ◽  
Vol VI (XII) ◽  
Author(s):  
Azme Bin Khamis ◽  
Raed Hameed ◽  
Maria Elena Nor ◽  
Norziha Che Him ◽  
Rohayu Mohd Salleh ◽  
...  

1983 ◽  
Vol 20 (1) ◽  
pp. 58-63 ◽  
Author(s):  
Sushila Umashankar ◽  
Johannes Ledolter

The authors discuss a special case of multiple time series models in which the autoregressive and moving average parameter matrices are diagonal. These models, called MTS-D, are appropriate if the random shocks which drive the series are only contemporaneously correlated. The flexibility and usefulness of this approach are illustrated in the context of a competitive market situation with five sales series, where individual components follow different univariate time series models. Theoretical as well as empirical justifications for expecting more precise parameter estimates are given. Forecasts from the model compare favorably with those from the univariate models.


2020 ◽  
Author(s):  
Hasnain Iftikhar ◽  
Moeeba Iftikhar

The increasing confirmed cases and death counts of Coronavirus disease 2019 (COVID-19) in Pakistan has disturbed not only the health sector, but also all other sectors of the country. For precise policy making, accurate and efficient forecasts of confirmed cases and death counts are important. In this work, we used five different univariate time series models including; Autoregressive (AR), Moving Average (MA), Autoregressive Moving Average (ARMA), Nonparametric Autoregressive (NPAR) and Simple Exponential Smoothing (SES) models for forecasting confirmed, death and recovered cases. These models were applied to Pakistan COVID-19 data, covering the period from 10, March to 3, July 2020. To evaluate models accuracy, computed two standard mean errors such as Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). The findings show that the time series models are useful in predicting COVID-19 confirmed, deaths and recovered cases. Furthermore, MA model outperformed the rest of all models for confirmed and deaths counts prediction, while ARMA is second best model. The SES model seems superior to other models for prediction of recovered counts, however MA is competitive. On the basis of best selected models, we forecast form 4th July to 14th August, 2020, which will be helpful for decision making of public health and other sectors of Pakistan.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 141
Author(s):  
Jacob Hale ◽  
Suzanna Long

Energy portfolios are overwhelmingly dependent on fossil fuel resources that perpetuate the consequences associated with climate change. Therefore, it is imperative to transition to more renewable alternatives to limit further harm to the environment. This study presents a univariate time series prediction model that evaluates sustainability outcomes of partial energy transitions. Future electricity generation at the state-level is predicted using exponential smoothing and autoregressive integrated moving average (ARIMA). The best prediction results are then used as an input for a sustainability assessment of a proposed transition by calculating carbon, water, land, and cost footprints. Missouri, USA was selected as a model testbed due to its dependence on coal. Of the time series methods, ARIMA exhibited the best performance and was used to predict annual electricity generation over a 10-year period. The proposed transition consisted of a one-percent annual decrease of coal’s portfolio share to be replaced with an equal share of solar and wind supply. The sustainability outcomes of the transition demonstrate decreases in carbon and water footprints but increases in land and cost footprints. Decision makers can use the results presented here to better inform strategic provisioning of critical resources in the context of proposed energy transitions.


2015 ◽  
Vol 11 (27) ◽  
pp. 120
Author(s):  
Osama Eldeeb ◽  
Petr Prochazka ◽  
Mansoor Maitah

<p>Indonesian biodiversity is threatened by massive deforestation. In this research paper, claims that deforestation in Indonesia is caused by corruption and supported by crude palm oil production is verified using time series analysis. Using Engel Granger cointegration test, three time series of data, specifically corruption perception index, rate of deforestation and price of crude palm oil are inspected for a long-run relationship. Test statistics suggests that there is no long-run relationship among these variables. Authors provide several explanations for this result. For example, corruption in Indonesia, as measured by CPI is still very high. This may mean that forest cover loss is possible even though there is a positive change in corruption level. According to the results, crude palm oil price has also no effect upon forest cover loss. This is likely due to very low shut-down price of crude palm oil for which production is still economical.</p>


Sign in / Sign up

Export Citation Format

Share Document