scholarly journals Even Simple Processes of π-calculus are Hard for Analysis

2018 ◽  
Vol 25 (6) ◽  
pp. 589-606
Author(s):  
Marat M. Abbas ◽  
Vladimir A. Zakharov

Mathematical models of distributed computations, based on the calculus of mobile processes (π-calculus) are widely used for checking the information security properties of cryptographic protocols. Since π-calculus is Turing-complete, this problem is undecidable in general case. Therefore, the study is carried out only for some special classes of π-calculus processes with restricted computational capabilities, for example, for non-recursive processes, in which all runs have a bounded length, for processes with a bounded number of parallel components, etc. However, even in these cases, the proposed checking procedures are time consuming. We assume that this is due to the very nature of the π -calculus processes. The goal of this paper is to show that even for the weakest model of passive adversary and for relatively simple protocols that use only the basic π-calculus operations, the task of checking the information security properties of these protocols is co-NP-complete.

2018 ◽  
Vol 18 (4) ◽  
pp. 61-74 ◽  
Author(s):  
S. Usha ◽  
S. Kuppuswami ◽  
M. Karthik

Abstract Cryptographic protocols are the backbone of information security. Unfortunately the security of several important components of these protocols can be neglected. This causes violation of personal privacy and threats to democracy. Integration of biometrics with cryptography can overcome this problem. In this paper an enhanced session key agreement protocol which uses the data derived from iris signature is suggested to improve the security of biometric based applications like e-Passport, e-Driving license, etc. The authenticity and security properties of the proposed protocol are analyzed using ProVerif tool and demonstrate it satisfies the intended properties.


Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 571 ◽  
Author(s):  
Eligijus Sakalauskas ◽  
Aleksejus Mihalkovich

This paper is a continuation of our previous publication of enhanced matrix power function (MPF) as a conjectured one-way function. We are considering a problem introduced in our previous paper and prove that tis problem is NP-Complete. The proof is based on the dual interpretation of well known multivariate quadratic (MQ) problem defined over the binary field as a system of MQ equations, and as a general satisfiability (GSAT) problem. Due to this interpretation the necessary constraints to MPF function for cryptographic protocols construction can be added to initial GSAT problem. Then it is proved that obtained GSAT problem is NP-Complete using Schaefer dichotomy theorem. Referencing to this result, GSAT problem by polynomial-time reduction is reduced to the sub-problem of enhanced MPF, hence the latter is NP-Complete as well.


Author(s):  
O. A. Laptyev ◽  
◽  
V. I. Stepanenko ◽  
Yu. O. Tykhonov

Author(s):  
Ming Li

The widespread use of RFID technology gives rise to security concerns. Cryptographic technology provides various valuable tools to enhance the security of RFID systems. In the literature, many cryptographic protocols have been proposed and designed for safeguarding RFID systems. In this chapter, the author describes some fundamental terminologies in information security and cryptology. More information on cryptography can be found in (Mao, 2003; Koblitz, 1994; Stinson, 2005; Stallings, 2006).


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Matvei Kotov ◽  
Dmitry Panteleev ◽  
Alexander Ushakov

Abstract We investigate security properties of two secret-sharing protocols proposed by Fine, Moldenhauer, and Rosenberger in Sections 4 and 5 of [B. Fine, A. Moldenhauer and G. Rosenberger, Cryptographic protocols based on Nielsen transformations, J. Comput. Comm. 4 2016, 63–107] (Protocols I and II resp.). For both protocols, we consider a one missing share challenge. We show that Protocol I can be reduced to a system of polynomial equations and (for most randomly generated instances) solved by the computer algebra system Singular. Protocol II is approached using the technique of Stallings’ graphs. We show that knowledge of {m-1} shares reduces the space of possible values of a secret to a set of polynomial size.


2020 ◽  
Vol 14 (4) ◽  
pp. 1-21
Author(s):  
Noureddine Aribi ◽  
Yahia Lebbah

Cryptographic protocols form the backbone of digital society. They are concurrent multiparty communication protocols that use cryptography to achieve security goals such as confidentiality, authenticity, integrity, etc., in the presence of adversaries. Unfortunately, protocol verification still represents a critical task and a major cost to engineer attack-free security protocols. Model checking and SAT-based techniques proved quite effective in this context. This article proposes an efficient automatic model checking approach that exemplifies a security property violation. In this approach, a protocol verification is abstracted as a compact planning problem, which is efficiently solved by a state-of-the-art SAT solver. The experiments performed on some real-world cryptographic protocols succeeded in detecting new logical attacks, violating some security properties. Those attacks encompass both “type flaw” and “replay” attacks, which are difficult to tackle with the existing planning-based approaches.


2010 ◽  
Vol 11 (2) ◽  
pp. 1-42 ◽  
Author(s):  
Hubert Comon-Lundh ◽  
Véronique Cortier ◽  
Eugen Zălinescu

Sign in / Sign up

Export Citation Format

Share Document