scholarly journals A Conceptual Design Activity for a First-year Mechanical Engineering Course

2020 ◽  
Author(s):  
Oziel Rios ◽  
Dani Fadda
1990 ◽  
Vol 5 (3) ◽  
pp. 167-179 ◽  
Author(s):  
Ian M. Carter

AbstractMechanical engineering design is a broad subject area covering many topics and bas influences upon many other engineering disciplines and activities. Computer support for mechanical engineering design activity has been in draughting Systems and analysis packages, but there has been little in conceptual design assistance. This paper presents a number of areas of work in which AI techniques and developments are being used, sometimes in conjunction with traditional methods, to improve the support of design. The approaches to design and design Systems are covered, along with some techniques that are used. Specifie design Systems illustrate progress, and integration issues and simultaneous engineering Systems indicate the way research is moving. Finally, discussion of the trends and future topics indicates where and how effort may be applied in the future.


Author(s):  
TMGP Duarte ◽  
AM Lopes ◽  
LFM da Silva

Understanding how the academic performance of first year undergraduate students is influenced by home, personal and institutional factors is fundamental to delineate policies able to mitigate failure. This paper investigates possible correlations between the academic performance of students at the end of high school with their achievements at the end of first year university. Data for students in the Integrated Master in Mechanical Engineering (MIEM) program within the Faculty of Engineering at the University of Porto are analysed for the period 2016/2017 to 2019/2020. The students’ performance is measured by two metrics and the students are structured as a whole and by groups, according to their gender (Male/Female), type of secondary school (Public/Private), living place (Away/Home) and the rank of MIEM in their application list of options (Option 1/Option 2–6). The information is organized statistically and possible correlations between the data are investigated. The analysis reveals limited correlation between the two metrics, meaning that all students may exhibit good or poor results at the end of first year in MIEM, independent of their status at entrance. An unanticipated pattern is exhibited for the group Option 2–6, since it shows that, despite entering into MIEM without top application marks, the students in this group can perform as well as the others. This behavior is consistent over time.


2012 ◽  
Vol 134 (4) ◽  
Author(s):  
Benjamin W. Caldwell ◽  
Gregory M. Mocko

Function modeling is often used in the conceptual design phase as an approach to capture a form-independent purpose of a product. Previous research uses a repository of reverse-engineered function models to support conceptual-based design tools, such as similarity and design-by-analogy. These models, however, are created at a different level of abstraction than models created in conceptual design for new products. In this paper, a set of pruning rules is developed to generate an abstract, conceptual-level model from a reverse-engineered function model. The conceptual-level models are compared to two additional levels of abstraction that are available in a design repository. The abstract models developed through the pruning rules are tested using a similarity metric to understand their usefulness in conceptual design. The similarity of 128 products is computed using the Functional Basis controlled vocabulary and a matrix-based similarity metric at each level of abstraction. A matrix-based clustering algorithm is then applied to the similarity results to identify groups of similar products. A subset of these products is studied to further compare the three levels of abstraction and to validate the pruning rules. It is shown that the pruning rules are able to convert reverse-engineered function models to conceptual-level models, better supporting design-by-analogy, a conceptual-stage design activity.


2018 ◽  
Vol 136 ◽  
pp. 1024-1031 ◽  
Author(s):  
Kenji Tobita ◽  
Ryoji Hiwatari ◽  
Hiroyasu Utoh ◽  
Yuya Miyoshi ◽  
Nobuyuki Asakura ◽  
...  

2020 ◽  
Vol 10 (18) ◽  
pp. 6303 ◽  
Author(s):  
Tomislav Martinec ◽  
Stanko Škec ◽  
Marija Majda Perišić ◽  
Mario Štorga

The conventional prescriptive and descriptive models of design typically decompose the overall design process into elementary processes, such as analysis, synthesis, and evaluation. This study revisits some of the assumptions established by these models and investigates whether they can also be applied for modelling of problem-solution co-evolution patterns that appear during team conceptual design activities. The first set of assumptions concerns the relationship between performing analysis, synthesis, and evaluation and exploring the problem and solution space. The second set concerns the dominant sequences of analysis, synthesis, and evaluation, whereas the third set concerns the nature of transitions between the problem and solution space. The assumptions were empirically tested as part of a protocol analysis study of team ideation and concept review activities. Besides revealing inconsistencies in how analysis, synthesis, and evaluation are defined and interpreted across the literature, the study demonstrates co-evolution patterns, which cannot be described by the conventional models. It highlights the important role of analysis-synthesis cycles during both divergent and convergent activities, which is co-evolution and refinement, respectively. The findings are summarised in the form of a model of the increase in the number of new problem and solution entities as the conceptual design phase progresses, with implications for both design research and design education.


Sign in / Sign up

Export Citation Format

Share Document