scholarly journals Ethical Reasoning in First-Year Engineering Design

2020 ◽  
Author(s):  
Amir Hedayati Mehdiabadi ◽  
Jordan James ◽  
Vanessa Svihla
Author(s):  
Mohammad Alsager Alzayed ◽  
Christopher McComb ◽  
Samuel T. Hunter ◽  
Scarlett R. Miller

Product dissection has been highlighted as an effective means of interacting with example products in order to produce creative outcomes. While product dissection is often conducted as a team in engineering design education as a component of larger engineering design projects, the research on the effectiveness of product dissection activities has been primarily limited to individuals. Thus, the goal of this study was to investigate the impact of the type(s) of product dissected in a team environment on the breadth of the design space explored and the underlying influence of educational level on these effects. This was accomplished through a computational simulation of 7,000 nominal brainstorming teams generated by a statistical bootstrapping technique that accounted for all possible team configurations. Specifically, each team was composed of four team members based on a design repository of 463 ideas generated by first-year and senior engineering design students after a product dissection activity. The results of the study highlight that simulated senior engineering design teams explored a larger solution space than simulated first-year teams and that dissecting different types of products allowed for the exploration of a larger solution space for all of the teams. The results also showed that dissecting two analogically far and two simple products was most effective in expanding the solution space for simulated senior teams. The findings presented in this study can lead to a better understanding of how to most effectively deploy product dissection modules in engineering design education in order to maximize the solution space explored.


Author(s):  
L. M. Lye ◽  
A. D. Fisher

This paper describes a new approach to teaching first year design at Memorial University. Students are introduced to engineering design using the product realization process (PRP) as a platform. The course integrates the business, engineering design, and prototyping functions of the PRP. The just-in-time structured delivery of background tools and theory complement the relatively unstructured nature of the design problems. Lab exercises are used to intoduce the basic practicalities of mechanical, electrical and electronic design. Projects are completed in teams with emphasis placed on teamwork, project management and communication skills. Student enthusiasm has been very high and this aides significantly in the learning process.


2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Mohammad Alsager Alzayed ◽  
Christopher McComb ◽  
Samuel T. Hunter ◽  
Scarlett R. Miller

Product dissection has been highlighted as an effective means of interacting with example products in order to produce creative outcomes. While product dissection is often conducted as a team in engineering design education, the research on the effectiveness of product dissection activities has been primarily limited to individuals. Thus, the purpose of this study was to investigate the impact of the type(s) of product dissected in a team environment on encouraging creative design outcomes (variety, novelty, and quantity) and the underlying influence of educational level and dissection modality on these effects. This was accomplished through a computational simulation of 14,000 teams of noninteracting brainstorming individuals generated by a statistical bootstrapping technique using a design repository of 931 ideas generated by first-year and senior engineering students. The results of the study highlight the importance of educational level, dissection modality, and the number of products dissected on team design outcomes. Specifically, virtual dissection encouraged the exploration of more novel solutions across both educational levels. However, physical dissection encouraged the exploration of a larger variety and quantity of ideas for senior teams while virtual dissection encouraged the same in first-year teams. Finally, dissecting different types of products allowed teams to explore a larger solution space. The findings presented in this study can lead to a better understanding of how to deploy product dissection modules in engineering design education in order to drive creative design outcomes.


Sign in / Sign up

Export Citation Format

Share Document