scholarly journals Teaching Engineering Design To First Year Engineering Students: A Case Study

2020 ◽  
Author(s):  
Sohail Anwar ◽  
Eric Granlund
2012 ◽  
Vol 134 (2) ◽  
Author(s):  
George Platanitis ◽  
Remon Pop-Iliev ◽  
Ahmad Barari

This paper proposes the use of a design structure matrix/work transformation matrix (DSM/WTM)-based methodology in academic settings to serve engineering educators as a facilitating tool for predetermining the difficulty and feasibility of design engineering projects they assign, given both the time constraints of the academic term and the expected skill level of the respective learners. By using a third-year engineering design project as a case study, engineering students actively participated in this comprehensive use of DSM methodologies. The engineering design process has been thoroughly analyzed to determine convergence characteristics based on the eigenvalues of the system followed by a sensitivity analysis on the originally determined DSM based on data provided by students in terms of task durations and number of iterations for each task. Finally, an investigation of the design process convergence due to unexpected events or random disturbances has been conducted. The obtained predictive model of the design process was compared to the actual dynamics of the project as experienced by the students and the effect of random disturbances at any point in the design process has thereby been evaluated.


2018 ◽  
Vol 14 (09) ◽  
pp. 98 ◽  
Author(s):  
Gülsüm Aşıksoy

In recent years Clicker technology has been widely used at universities to provide interactive learning environments<em>. </em>It is used with suitable pedagogic approaches to obtain the expected learning outcome. The aim of the study is to specify student views about the environment developed as a result of the integration of Team-based learning strategy and clicker technology in education. The participants are 30 first-year engineering students taking Physics I at Near East University. A case study design was used in this research. After overviewing the literature, the researcher prepared a semi-structured interview form to collect the data. İnterviews at the voluntary base was given after a five-week application process. The data were analyzed through content analysis method. The findings indicated that student perception of clicker supported Team-Based learning was positive. The students admitted that this environment enhanced their learning and they even made suggestions. This study can help educationalists integrate clicker technology in Team-Based learning strategy.


Author(s):  
Michael McGuire ◽  
Kin Fun Li ◽  
Fayez Gebali

Design is associated with the invention,planning and building a product. Engineering design, inparticular, takes considerable effort, skills, andintegration of knowledge; hence, it is difficult to teachfreshmen this subject since they have not possessed ordeveloped the proper skill set yet. The Faculty ofEngineering at the University of Victoria has beenteaching engineering design (in two successive courses)to all first-year engineering students. In addition toattending plenary lectures, student teams are working oncompetitive projects in the laboratory, while participatingin highly integrated communication modules. In thiswork, we discuss the curricula of these design courses,model of delivery and share our experience for the pastthree years.


2018 ◽  
Author(s):  
Christopher McComb ◽  
Catherine Berdanier ◽  
Jessica Menold

This paper describes the design and evaluation of a novel assessment for first-year engineering design courses that is rooted in an authentic design challenge. This approach modifies the traditional written-exam approach typically found in engineering courses, which is inherently inauthentic and cannot easily capture the exploratory nature of engineering design. Our assessment improves alignment with common learning objectives found in first-year engineering design courses and additionally prepares students for the type of case study interviews that are increasingly common for entry-level engineering jobs. To evaluate our assessment, 50 first-year students completed the engineering design self-efficacy instrument once before beginning the assessment and a second time approximately 48 hours later upon completion of a reflection assignment. In addition, students retrospectively reported their perceived change in self-efficacy during the assessment. Analysis shows that students perceived a large retrospective increase in skill level, despite only a small increase in directly measured self-efficacy. These results are analyzed in light of the Dunning-Kruger effect and we posit that the assessment helps to align students’ self-efficacy with their actual skill level. Increased alignment of self-efficacy with skill level may minimize student frustration when encountering challenging tasks in the future, potentially increasing retention of engineering students as well as facilitating the development of lifelong learning attitudes.


Author(s):  
Mohammad Alsager Alzayed ◽  
Scarlett R. Miller ◽  
Jessica Menold ◽  
Jacquelyn Huff ◽  
Christopher McComb

Abstract Research on empathy has been surging in popularity in the engineering design community since empathy is known to help designers develop a deeper understanding of the users’ needs. Because of this, the design community has been invested in devising and assessing empathic design activities. However, research on empathy has been primarily limited to individuals, meaning we do not know how it impacts team performance, particularly in the concept generation and selection stages of the design process. Specifically, it is unknown how the empathic composition of teams, average (elevation) and standard deviation (diversity) of team members’ empathy, would impact design outcomes in the concept generation and selection stages of the design process. Therefore, the goal of the current study was to investigate the impact of team trait empathy on concept generation and selection in an engineering design student project. This was accomplished through a computational simulation of 13,482 teams of noninteracting brainstorming individuals generated by a statistical bootstrapping technique drawing upon a design repository of 806 ideas generated by first-year engineering students. The main findings from the study indicate that the elevation in team empathy positively impacted simulated teams’ unique idea generation and selection while the diversity in team empathy positively impacted teams’ generation of useful ideas. The results from this study can be used to guide team formation in engineering design.


Author(s):  
Sean Maw

In the Fall of 2013, first-year Mount RoyalUniversity engineering design students completed a 5-week long team-based project with the objective ofproducing a cardboard bed for emergency/refugeesituations. The project was a success and this paperdetails how it was run, what lessons were learned, and thenature of the outcomes. For those considering a similartype of project in the future, resources and client groupsare described. Ultimately, the student groups were ableto design a variety of cardboard beds that supported atleast one adult, comfortably. Variations included bedsfor African cholera outbreaks, Syrian and African refugeecamps, and Canadian emergency shelters.


Sign in / Sign up

Export Citation Format

Share Document