scholarly journals Development Of A Web Based Learning And Instruction Support System For Renewable Energy Sources/Hybrid Power Systems Courses

2020 ◽  
Author(s):  
Radian Belu ◽  
Alexandru Belu
Author(s):  
Krishna Vijayaraghavan ◽  
Himanshu Tyagi ◽  
Shahzada Randhawa ◽  
Manpreet Singh

India has always been victim of power failures or blackouts and the recent July 2012 countrywide blackout is a perfect example for it. It is expected that due to the widening gap between supply and demand, such instances of power failure would occur more regularly in future. Such blackouts are also be foreseen in other parts of the world. The electricity grids in many countries are highly centralized and are mostly dependent on fossil-fuel based energy sources (coal, oil, natural gas etc). Due to the rapid rise in the living standards of developing countries such as India and China, there is an increase in demand for electricity for running various appliances, as well as for heating and air-conditioning equipment. Such an increased in demand places tremendous strain on ailing centralized grid burning fossil fuel. The use of renewable energy sources (such as solar and wind) could potentially allow large amount of demand to be met though alternative means and offset the demand on the grid. The advancement in technology has encouraged the implementation of renewable resources especially solar and wind. Hybrid power systems (HPS) that consist of these resources can significantly lower storage requirements. Furthermore, besides being cost-efficient, it is coherent to the weather conditions since solar and wind complement each other well. For highly efficient hybrid power systems to be developed, a significant degree of research must be applied to further their development. This includes tasks such as modeling these systems and applying proficient control algorithms to maximize efficiency. This paper focuses on simulation of an HPS consisting of a photovoltaic (PV) module, wind turbine (WT), and a lead acid battery through MATLAB/SIMULINK software. Moreover, a control algorithm is proposed, which leads to an efficient and autonomous operation of the HPS, along with maximizing power output from PV module and WT. The model and control system were tested using sample hourly solar radiation, temperature, and wind speed data to generate the power output from the PV module and WT, which was then processed through the proposed algorithm, to power a sample hourly load profile. The results indicate that a simple HPS can meet the type of load demand provided in an efficient and effective manner.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1948 ◽  
Author(s):  
Fu-Cheng Wang ◽  
Yi-Shao Hsiao ◽  
Yi-Zhe Yang

This paper discusses the optimization of hybrid power systems, which consist of solar cells, wind turbines, fuel cells, hydrogen electrolysis, chemical hydrogen generation, and batteries. Because hybrid power systems have multiple energy sources and utilize different types of storage, we first developed a general hybrid power model using the Matlab/SimPowerSystemTM, and then tuned model parameters based on the experimental results. This model was subsequently applied to predict the responses of four different hybrid power systems for three typical loads, without conducting individual experiments. Furthermore, cost and reliability indexes were defined to evaluate system performance and to derive optimal system layouts. Finally, the impacts of hydrogen costs on system optimization was discussed. In the future, the developed method could be applied to design customized hybrid power systems.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 573
Author(s):  
Mohamed Mokhtar ◽  
Mostafa I. Marei ◽  
Mariam A. Sameh ◽  
Mahmoud A. Attia

The frequency of power systems is very sensitive to load variations. Additionally, with the increased penetration of renewable energy sources in electrical grids, stabilizing the system frequency becomes more challenging. Therefore, Load Frequency Control (LFC) is used to keep the frequency within its acceptable limits. In this paper, an adaptive controller is proposed to enhance the system performance under load variations. Moreover, the proposed controller overcomes the disturbances resulting from the natural operation of the renewable energy sources such as Wave Energy Conversion System (WECS) and Photovoltaic (PV) system. The superiority of the proposed controller compared to the classical LFC schemes is that it has auto tuned parameters. The validation of the proposed controller is carried out through four case studies. The first case study is dedicated to a two-area LFC system under load variations. The WECS is considered as a disturbance for the second case study. Moreover, to demonstrate the superiority of the proposed controller, the dynamic performance is compared with previous work based on an optimized controller in the third case study. Finally in the fourth case study, a sensitivity analysis is carried out through parameters variations in the nonlinear PV-thermal hybrid system. The novel application of the adaptive controller into the LFC leads to enhance the system performance under disturbance of different sources of renewable energy. Moreover, a robustness test is presented to validate the reliability of the proposed controller.


Sign in / Sign up

Export Citation Format

Share Document