scholarly journals An Adaptive Load Frequency Control for Power Systems with Renewable Energy Sources

Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 573
Author(s):  
Mohamed Mokhtar ◽  
Mostafa I. Marei ◽  
Mariam A. Sameh ◽  
Mahmoud A. Attia

The frequency of power systems is very sensitive to load variations. Additionally, with the increased penetration of renewable energy sources in electrical grids, stabilizing the system frequency becomes more challenging. Therefore, Load Frequency Control (LFC) is used to keep the frequency within its acceptable limits. In this paper, an adaptive controller is proposed to enhance the system performance under load variations. Moreover, the proposed controller overcomes the disturbances resulting from the natural operation of the renewable energy sources such as Wave Energy Conversion System (WECS) and Photovoltaic (PV) system. The superiority of the proposed controller compared to the classical LFC schemes is that it has auto tuned parameters. The validation of the proposed controller is carried out through four case studies. The first case study is dedicated to a two-area LFC system under load variations. The WECS is considered as a disturbance for the second case study. Moreover, to demonstrate the superiority of the proposed controller, the dynamic performance is compared with previous work based on an optimized controller in the third case study. Finally in the fourth case study, a sensitivity analysis is carried out through parameters variations in the nonlinear PV-thermal hybrid system. The novel application of the adaptive controller into the LFC leads to enhance the system performance under disturbance of different sources of renewable energy. Moreover, a robustness test is presented to validate the reliability of the proposed controller.

2020 ◽  
Vol 6 ◽  
pp. 1597-1603
Author(s):  
Lei Liu ◽  
Tomonobu Senjyu ◽  
Takeyoshi Kato ◽  
Abdul Motin Howlader ◽  
Paras Mandal ◽  
...  

2021 ◽  
Vol 850 (1) ◽  
pp. 012017
Author(s):  
J Shri Saranyaa ◽  
A Peer Fathima ◽  
Asutosh Mishra ◽  
Rushali Ghosh ◽  
Shalmali Das

Abstract Modern day scenario has an increasing power demand due to the growing development which indeed increases the load on the generation which might cause turbulence in the system and may bounce out of stability. The governor itself can’t handle such frequent load changes and adjust the generation amount to keep the frequency between the margins. This paper proposes an approach towards such predicament to incorporate an optimization method in order to ensure stability of the system despite the drastic changes in demand. Load frequency control is a control method for maintaining the frequency of the system during the change in demand. Use of controllers has proven to be effective in controlling the frequency deviations in the power systems and the response of the controller is further improved using optimization technique for better stability. The PID controller tuned by Particle Swarm Optimization is employed in multi-area system which reduces the time response by a considerable amount and the deviation settles much quicker despite the rapid load changes. The proposed controller is executed further for renewable energy sources connected to the individual areas and demonstration proves that the optimized controller is efficient enough in handling the frequency deviations when wind and solar with sunlight penetration is incorporated.


2020 ◽  
Vol 12 (15) ◽  
pp. 6084
Author(s):  
Simona-Vasilica Oprea ◽  
Adela Bâra ◽  
Ștefan Preda ◽  
Osman Bulent Tor

Electricity generation from renewable energy sources (RES) has a common feature, that is, it is fluctuating, available in certain amounts and only for some periods of time. Consuming this electricity when it is available should be a primary goal to enhance operation of the RES-powered generating units which are particularly operating in microgrids. Heavily influenced by weather parameters, RES-powered systems can benefit from implementation of sensors and fuzzy logic systems to dynamically adapt electric loads to the volatility of RES. This study attempts to answer the following question: How to efficiently integrate RES to power systems by means of sustainable energy solutions that involve sensors, fuzzy logic, and categorization of loads? A Smart Adaptive Switching Module (SASM) architecture, which efficiently uses electricity generation of local available RES by gradually switching electric appliances based on weather sensors, power forecast, storage system constraints and other parameters, is proposed. It is demonstrated that, without SASM, the RES generation is supposed to be curtailed in some cases, e.g., when batteries are fully charged, even though the weather conditions are favourable. In such cases, fuzzy rules of SASM securely mitigate curtailment of RES generation by supplying high power non-traditional storage appliances. A numerical case study is performed to demonstrate effectiveness of the proposed SASM architecture for a RES system located in Hulubești (Dâmbovița), Romania.


2019 ◽  
Vol 115 ◽  
pp. 109369 ◽  
Author(s):  
Ana Fernández-Guillamón ◽  
Emilio Gómez-Lázaro ◽  
Eduard Muljadi ◽  
Ángel Molina-García

Sign in / Sign up

Export Citation Format

Share Document