scholarly journals Strain Gage Based Instrumentation For In Situ Diesel Fuel Injection System Diagnostics

2020 ◽  
Author(s):  
Steven J. Hoffman ◽  
Samuel C. Homsy ◽  
Kevin M. Morrison ◽  
David R. Dowling ◽  
Zoran S. Filipi ◽  
...  
2019 ◽  
Vol 86 ◽  
pp. 276-286 ◽  
Author(s):  
Jinxin Wang ◽  
Zhongwei Wang ◽  
Viacheslav Stetsyuk ◽  
Xiuzhen Ma ◽  
Fengshou Gu ◽  
...  

1999 ◽  
Vol 121 (1) ◽  
pp. 159-165 ◽  
Author(s):  
B. Kegl

This paper describes an optimal design procedure for improving the injection rate histories of an electronic control diesel fuel injection system (ECD-FIS) with sleeve-timing-controlled pump. The research objective was to develop an approach for upgrading an existing ECD-FIS by performing only some low-cost modifications on its design. Therefore, the design variables are related to a relative small number of geometrical and control parameters of the injection system. The geometrical parameters influence only the shape of a rational Be´zier curve, representing the cam profile of the pump. The control parameters influence the injection timing and injection quantity. These control parameters are introduced into the set of design variables in order to enable good results over the whole engine operating regime. The design problem is formulated in a form of a non-linear problem of mathematical programming. Several operating regimes are simultaneously taken into account by an appropriate objective function while some geometrical properties of the cam profile as well as some injection parameters are kept within acceptable limits by the imposed constraints. The theory is illustrated with a numerical example.


2001 ◽  
Vol 10 (3) ◽  
pp. 223-227 ◽  
Author(s):  
Yongling He ◽  
Zhihe Zhao ◽  
Jianxin Liu ◽  
Huiyong Du ◽  
Min Li ◽  
...  

Author(s):  
Yong Yi ◽  
Aleksandra Egelja ◽  
Clement J. Sung

The development of a very high pressure diesel fuel injection system has been one of the key solutions to improve engine performance and to reduce emissions. The diesel fuel management in the injector directly affects how the fuel spray is delivered to the combustion chamber, and therefore affects the mixing, combustion and the pollutants formation. To design such a very high pressure diesel fuel injection system, an advanced CFD tool to predict the complex flow in the fuel injection system is required in the robust design process. In this paper, a novel 3D CFD dynamic mesh with cavitation model is developed to simulate the dynamic response of the needle motion of a diesel fuel injector corresponding to high common rail pressure and other dimensional design variables, coupling with the imbalance of the spring force and the flow force (pressure plus viscous force). A mixture model is used for cavitation resulting from high speed flow in fuel injector. Due to the lack of experimental data, the model presented in this paper is only validated by a limited set of experimental data. Required meshing strategy is also discussed in the paper.


Sign in / Sign up

Export Citation Format

Share Document