ASME 2005 Internal Combustion Engine Division Spring Technical Conference
Latest Publications


TOTAL DOCUMENTS

53
(FIVE YEARS 0)

H-INDEX

8
(FIVE YEARS 0)

Published By ASMEDC

0791841847, 079183753x

Author(s):  
David L. Ahrens ◽  
Azer P. Yalin ◽  
Daniel B. Olsen ◽  
Gi-Heon Kim

Using a laser, as opposed to a conventional (electrical) spark plug, to create a combustion initiating spark is potentially advantageous for several reasons: flexibility in choosing and optimizing the spark location, in particular to move the spark away from solid heat sinks; production of a more robust spark containing more energy; and obviation of electrode erosion problems. These advantages may lead to an extension of the lean limit, an increase in engine thermal efficiency, and the concomitant benefits of reduced pollutant emissions. This paper presents the design of a laser ignition system appropriate for a large bore natural gas engine. Design considerations include: optimization of spark location, design of beam delivery system and optical plug, and mitigation of vibration and thermal effects. Engine test results will be presented in the second paper of this two-paper series.


Author(s):  
Hongxun Gao ◽  
Matt J. Hall ◽  
Ofodike A. Ezekoye ◽  
Ron D. Matthews

It is a very challenging problem to reliably ignite extremely lean mixtures, especially for the low speed, high load conditions of stationary large-bore natural gas engines. If these engines are to be used for the distributed power generation market, it will require operation with higher boost pressures and even leaner mixtures. Both place greater demands on the ignition system. The railplug is a very promising ignition system for lean burn natural gas engines with its high-energy deposition and high velocity plasma jet. High-speed photography was used to study the discharge process. A heat transfer model is proposed to aid the railplug design. A parameter study was performed both in a constant volume bomb and in an operating natural gas engine to improve and optimize the railplug designs. The engine test results show that the newly designed railplugs can ensure the ignition of very lean natural gas mixtures and extend the lean stability limit significantly. The new railplug designs also improve durability.


Author(s):  
Anirudh Gautam ◽  
Avinash Kumar Agarwal

As a part of the upgradation program of its fleet of 1940 kW diesel electric locomotives, Indian Railways undertook evaluation, matching and optimization of different turbochargers. The objective was to increase engine output, improve fuel efficiency and limit thermal loading. Trials with different makes of turbochargers using different combinations of diffuser, nozzle rings and compressors were carried out for identifying the optimum configuration for an uprated engine rating of 2310 kW. Test bed evaluations have been carried out on Research Design & Standards Organization (RDSO) test beds for four different designs of turbochargers with different configurations. Two types of surge tests were carried out at each operating point i.e. constant brake mean effective pressure (BMEP) and constant power. In the first case, BMEP was kept constant and engine speed varied and in the second case, power was kept constant and engine speed was varied. The tests consisted of recording the parameters at various combinations of engine speed and power. With different combinations, the highest operating point for a test was governed by peak firing pressures. Some of the parameters, which were monitored, were the compressor air inlet temperature, representative peak firing pressures, turbine inlet temperature, average cylinder head temperature, brake specific fuel consumption (BSFC) and air manifold temperature. This paper discusses the methods adopted in carrying out these evaluations and optimizations and the results obtained thereof along with the decision criteria for making final selections.


Author(s):  
Anatoli A. Borissov ◽  
Alexander A. Borissov ◽  
Kenneth K. Kramer

Each year, the users in the U.S. alone spend over $100 billion on various type of engines to produce power — electrical, mechanical, and thermal. Despite technological advances, most all of these power generation systems have only been fine tuned: the engine efficiencies may have been improved slightly, but the underlying thermodynamic principles have not been modified to effect a drastic improvement. The result is that most engines in service today suffer from two major problems: low fuel efficiency and emission of high levels of polluting gases in the exhaust gases. The current state of propulsion engines or distributed generation technologies using heat engines shows an average efficiency of between 20% and 40%. These low efficiencies in a high–cost energy market indicate a great need for more efficient technologies. This paper describes a new method of achieving a very high efficiency, namely optimizing every stage of the thermodynamic process-Brayton cycle. Two modified processes, such as isothermal compression and recuperation, add about 35% efficiency to the conventional Brayton cycle, making 60% efficiency for modified Brayton cycle. By utilizing a positive displacement compressor and expander with a novel vortex combustion chamber and a vortex recuperator, high levels of efficiency with low emissions and noise are possible. The prototype engine with low RPM and high torque has been built which use continuous combustion of different fuels under a constant pressure. First results of the engine’s components testing are presented.


Author(s):  
Fabrizio Ponti

Many methodologies have been developed in the past for misfire detection purposes based on the analysis of the instantaneous engine speed. The missing combustion is usually detected thanks to the sudden engine speed decrease that takes place after a misfire event. Misfire detection and in particular cylinder isolation is anyhow still a challenging issue for engines with a high number of cylinders, for engine operating conditions at low load or high engine speed and for multiple misfire events. When a misfire event takes place in fact a torsional vibration is excited and shows up in the instantaneous engine speed waveform. If a multiple misfire occurs this torsional vibration is excited more than once in a very short time interval. The interaction among these successive vibrations can generate false alarms or misdetection, and an increased complexity when dealing with cylinder isolation. The paper presents the development of a powertrain torsional behavior model in order to identify the effects of a misfire event on the instantaneous engine speed signal. The identified waveform has then been used to filter out the torsional vibration effects in order to enlighten the missing combustions even in the case of multiple misfire events. The model response is also used to quicken the setup process for the detection algorithm employed, evaluating before running specific experimental tests on a test bench facility, the values for the threshold and the optimal setup of the procedure. The proposed algorithm is developed in this paper for an SI L4 engine; Its application to other engine configurations is possible, as it is also discussed in the paper.


Author(s):  
John J. Batteh ◽  
Michael M. Tiller

In an effort to improve quality, shorten engine development times, and reduce costly and time-consuming experimental work, analytic modeling is being used upstream in the product development process to evaluate engine robustness to noise factors. This paper describes a model-based method for evaluating engine NVH (Noise, Vibration, and Harshness) robustness due to manufacturing variations for a statistically significant engine population. A brief discussion of the cycle simulation model and its capabilities is included. The methodology consists of Monte Carlo simulations involving several noise factors to obtain the crank-angle resolved response of the combustion process and Fourier analysis of the resulting engine torque. Further analysis of the Fourier results leads to additional insights regarding the relative importance of and sensitivity to the individual noise factors. While the cost and resources required to experimentally evaluate a large engine population can be prohibitive, the analytical modeling proved to be a cost-effective way of analyzing the engine robustness taking into account manufacturing process capability.


Author(s):  
Dhananjay B. Zodpe ◽  
Nishikant V. Deshpande

Diesel Engines have better fuel economy compared to gasoline engines. Society is now aware of various harmful effects of pollution and various researchers are trying to use fuel reformulation method to meet the forthcoming stringent air pollution norms for the diesel engines. This paper presents an experimental investigation on use of three different low price ethanol based oxygenate-diesel blends (oxygenate 4, 8 and 12% in blend) as an oxygen enriched fuel in diesel engine and its effect on brake thermal efficiency, smoke density and emissions of CO, HC, NOx etc is studied. It was observed that there is substantial reduction in the smoke density of exhaust gases and the observed reduction was found proportional to the mass of oxygen present in the blend. Marginal increase in NOx and brake thermal efficiency was observed and there was no significant change in the brake power of the engine.


Author(s):  
M. Rizwan Khan ◽  
Tariq Shamim

Particulate emissions from diesel engines, which have hazardous effects on living beings and environment, can be controlled by employing diesel particulate filters (DPFs). The DPF cleans the exhaust by physical trapping of the particulates. A major challenge in developing a DPF with wider applications is its lower durability. The filter durability may be increased by careful design of regeneration (soot oxidation) strategies. The regeneration characteristics of a DPF under steady state conditions are well known. However, during a typical driving cycle, a DPF is subjected to highly transient conditions due to changes in driving modes. These transients result in fluctuations of exhaust flow rate, gas composition and temperature. Such modulating exhaust conditions make the DPF performance and regeneration characteristics differ significantly from that under steady state conditions. The objective of this paper is to investigate the thermal and catalytic regeneration characteristics of DPF under transient exhaust conditions. In this work, a computational investigation is conducted to determine the effect of temperature and exhaust flow modulations on a DPF. The paper contributes to a better fundamental understanding of the filter’s performance under transient driving conditions.


Author(s):  
Long Liang ◽  
Chulhwa Jung ◽  
Song-Charng Kong ◽  
Rolf D. Reitz

An efficient semi-implicit numerical method is developed for solving the detailed chemical kinetic source terms in I.C. engine simulations. The detailed chemistry system is a group of coupled extremely stiff O.D.E.s, which presents a very stringent timestep limitation when solved by standard explicit methods, and is computationally expensive when solved by iterative implicit methods. The present numerical solver uses a stiffly-stable noniterative semi-implicit method, in which the numerical solution to the stiff O.D.E.s never blows up for arbitrary large timestep. The formulation of numerical integration exploits the physical requirement that the species density and specific internal energy in the computational cells must be nonnegative, so that the Lipschitz timestep constraint is not present [1,2], and the computation timestep can be orders of magnitude larger than that possible in standard explicit methods and can be formulated to be of high formal order of accuracy. The solver exploits the characteristics of the stiffness of the O.D.E.s by using a sequential sort algorithm that ranks an approximation to the dominant eigenvalues of the system to achieve maximum accuracy. Subcycling within the chemistry solver routine is applied for each computational cell in engine simulations, where the subcycle timestep is dynamically determined by monitoring the rate of change of concentration of key species which have short characteristic time scales and are also important to the chemical heat release. The chemistry solver is applied in the KIVA-3V code to diesel engine simulations. Results are compared with those using the CHEMKIN package which uses the VODE implicit solver. Very good agreement was achieved for a wide range of engine operating conditions, and 40∼70% CPU time savings were achieved by the present solver compared to CHEMKIN.


Author(s):  
Giulio Cazzoli ◽  
Claudio Forte ◽  
Cristiano Vitali ◽  
Piero Pelloni ◽  
Gian Marco Bianchi

A wall film model has been implemented in a customized version of KIVA-3 code developed at University of Bologna. The model simulates the dynamics of a liquid wall film generated by impinging sprays by solving the mass, momentum and energy equations of a two-dimensional liquid flow over a three-dimensional surface under the basic hypothesis of a ‘thin laminar flow’. The major phenomena taken into account in the present model are: wall film formation by impinging spray; body forces, such as gravity or acceleration of the wall; shear stress at the interface with the gas and no slip condition on the wall; momentum contribution and dynamic pressure generated by the tangential and normal component of the impinging drops; film evaporation by heat exchange with wall and surrounding gas. The governing equation have been integrated in space by using a finite volume approach with a first order upwind differencing scheme and they have been integrated in time with a fully explicit method. Particular care has been taken in numerical implementation of the model. Two different test cases reproducing PFI gasoline and DI Diesel engine wall film conditions have been simulated. The comparisons with experimental data show that the present wall film model well reproduces the evolution in time and the spatial distribution of the liquid film thickness in both cases.


Sign in / Sign up

Export Citation Format

Share Document