Optimal control of four-scroll chaotic system using modal series method

2018 ◽  
Vol 61 (3) ◽  
pp. 127-134
Author(s):  
Malihe Roohparvar ◽  
Mehdi Neyestani
2004 ◽  
Vol 14 (10) ◽  
pp. 3505-3517 ◽  
Author(s):  
HUAGUANG ZHANG ◽  
ZHILIANG WANG ◽  
DERONG LIU

In this paper, the problem of chaotifying the continuous-time fuzzy hyperbolic model (FHM) is studied. By tracking the dynamics of a chaotic system, a controller based on inverse optimal control and adaptive parameter tuning methods is designed to chaotify the FHM. Simulation results show that for any initial value the FHM can track a chaotic system asymptotically.


2007 ◽  
Vol 21 (29) ◽  
pp. 1999-2007 ◽  
Author(s):  
XINGYUAN WANG ◽  
YONG GAO

This paper studies the dynamical behavior of the Newton–Leipnik system and its trajectory-transformation control problem to multiple attractors. A simple linear state feedback controller for the Newton–Leipnik system based on the Lyapunov stability theory and applying the inverse optimal control method is designed. We stabilize asymptotically the chaotic attractors to unstable equilibriums of the system, so that the transformation of one attractor to another for the trajectory of the Newton–Leipnik system is realized. Theoretical analyses and numerical simulations both indicate the effectiveness of the controller. At last, the inverse optimal control method is proven effective for the chaotic systems with multiple attractors by the example on the unified chaotic system.


2011 ◽  
Vol 474-476 ◽  
pp. 108-113
Author(s):  
Xin Gao

In this paper, we numerically investigate the chaotic behaviors of a fractional-order system. We find that chaotic behaviors exist in the fractional-order system with an order being less than 3. The lowest order we find to have chaos is 2.4 in such system. In addition, we numerically simulate the continuances of the chaotic behaviors in the fractional-order system with orders ranging from 2.7 to 3. Finally, a simple, but effective, linear state feedback controller is proposed for controlling the fractional-order chaotic system based on an inverse optimal control approach. Numerical simulations show the effectiveness and feasibility of the proposed controller.


Author(s):  
J.L. Carrascosa ◽  
G. Abella ◽  
S. Marco ◽  
M. Muyal ◽  
J.M. Carazo

Chaperonins are a class of proteins characterized by their role as morphogenetic factors. They trantsiently interact with the structural components of certain biological aggregates (viruses, enzymes etc), promoting their correct folding, assembly and, eventually transport. The groEL factor from E. coli is a conspicuous member of the chaperonins, as it promotes the assembly and morphogenesis of bacterial oligomers and/viral structures.We have studied groEL-like factors from two different bacteria:E. coli and B.subtilis. These factors share common morphological features , showing two different views: one is 6-fold, while the other shows 7 morphological units. There is also a correlation between the presence of a dominant 6-fold view and the fact of both bacteria been grown at low temperature (32°C), while the 7-fold is the main view at higher temperatures (42°C). As the two-dimensional projections of groEL were difficult to interprete, we studied their three-dimensional reconstruction by the random conical tilt series method from negatively stained particles.


Sign in / Sign up

Export Citation Format

Share Document