scholarly journals Unsteady Magnetohydrodynamic Couette-Poiseuille Flow within Porous Plates Filled with Porous Medium in the Presence of a Moving Magnetic Field with Hall and Ion-slip Effects

2016 ◽  
Vol 34 (1) ◽  
pp. 89-97 ◽  
Author(s):  
J. Singh ◽  
Naveen Joshi ◽  
S. Begum
2020 ◽  
Vol 7 ◽  

This paper studies the effects of Hall and ion slip on two dimensional incompressible flow and heat transfer of an electrically conducting viscous fluid in a porous medium between two parallel plates, generated due to periodic suction and injection at the plates. The flow field, temperature and pressure are assumed to be periodic functions in ti e ω and the plates are kept at different but constant temperatures. A numerical solution for the governing nonlinear ordinary differential equations is obtained using quasilinearization method. The graphs for velocity, temperature distribution and skin friction are presented for different values of the fluid and geometric parameters.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Faiza M. N. El-Fayez

A partially ionized fluid is driven by a stretching disk, in the presence of a magnetic field that is strong enough to produce significant hall current and ion-slip effects. The limiting behavior of the flow is studied, as the magnetic field strength grows indefinitely. The flow variables are properly scaled, and uniformly valid asymptotic expansions of the velocity components are obtained. The leading order approximations show sinusoidal behavior that is decaying exponentially, as we move away from the disk surface. The two-term expansions of the radial and azimuthal surface shear stress components, as well as the far field inflow speed, compare well with the corresponding finite difference solutions, even at moderate magnetic fields. The effect of mass transfer (suction or injection) through the disk is also considered.


Sign in / Sign up

Export Citation Format

Share Document