scholarly journals Dynamic Stability Analysis of Functionally Graded Timoshenko Beams with Internal Viscous Damping Distribution

2019 ◽  
Vol 52 (4) ◽  
pp. 341-346
Author(s):  
Mohamed Bouamama ◽  
Abbes Elmeiche ◽  
Abdelhak Elhennani ◽  
Tayeb Kebir
1976 ◽  
Vol 98 (4) ◽  
pp. 1145-1149 ◽  
Author(s):  
J. Thomas ◽  
B. A. H. Abbas

A Finite Element model is developed for the stability analysis of Timoshenko beam subjected to periodic axial loads. The effect of the shear deformation on the static buckling loads is studied by finite element method. The results obtained show excellent agreement with those obtained by other analytical methods for the first three buckling loads. The effect of shear deformation and for the first time the effect of rotary inertia on the regions of dynamic instability are investigated. The elastic stiffness, geometric stiffness, and inertia matrices are developed and presented in this paper for a Timoshenko beam. The matrix equation for the dynamic stability analysis is derived and solved for hinged-hinged and cantilevered Timoshenko beams and the results are presented. Values of critical loads for beams with various shear parameters are presented in a graphical form. First four regions of dynamic instability for different values of rotary inertia parameters are presented. As the rotary inertia parameter increases the regions of instability get closer to each other and the width of the regions increases thus making the beam more sensitive to periodic forces.


2019 ◽  
Vol 19 (02) ◽  
pp. 1950002 ◽  
Author(s):  
Masoumeh Soltani ◽  
Behrouz Asgarian

An improved approach based on the power series expansions is proposed to exactly evaluate the static and buckling stiffness matrices for the linear stability analysis of axially functionally graded (AFG) Timoshenko beams with variable cross-section and fixed–free boundary condition. Based on the Timoshenko beam theory, the equilibrium equations are derived in the context of small displacements, considering the coupling between the transverse deflection and angle of rotation. The system of stability equations is then converted into a single homogeneous differential equation in terms of bending rotation for the cantilever, which is solved numerically with the help of the power series approximation. All the mechanical properties and displacement components are thus expanded in terms of the power series of a known degree. Afterwards, the shape functions are gained by altering the deformation shape of the AFG nonprismatic Timoshenko beam in a power series form. At the end, the elastic and buckling stiffness matrices are exactly determined by the weak form of the governing equation. The precision and competency of the present procedure in stability analysis are assessed through several numerical examples of axially nonhomogeneous and homogeneous Timoshenko beams with clamped-free ends. Comparison is also made with results obtained using ANSYS and other solutions available, which indicates the correctness of the present method.


Sign in / Sign up

Export Citation Format

Share Document