scholarly journals Inverse problems for the heat equation

2017 ◽  
Vol 21 (6) ◽  
pp. 62-75
Author(s):  
A.R. Zaynullov

The inverse problem of finding initial conditions and the right-hand side had been studied for the inhomogeneous heat equation on the basis of formulas for the solution of the first initial-boundary value problem. A criterion of uniqueness of solution of the inverse problem for finding the initial condition was found with Spectral analysis. The right side of the heat equation is represented as a product of two functions, one of which depends on the spatial coordinates and the other from time. In one task, along with an unknown solution is sought factor on the right side, depending on the time, and in another - a factor that depends on the spatial coordinates. For these tasks, we prove uniqueness theorems, the existence and stability of solution.

2003 ◽  
Vol 3 (1) ◽  
pp. 45-58 ◽  
Author(s):  
Dejan Bojović

Abstract In this paper we consider the first initial boundary-value problem for the heat equation with variable coefficients in a domain (0; 1)x(0; 1)x(0; T]. We assume that the solution of the problem and the coefficients of the equation belong to the corresponding anisotropic Sobolev spaces. Convergence rate estimate which is consistent with the smoothness of the data is obtained.


2019 ◽  
Vol 84 (5) ◽  
pp. 873-911 ◽  
Author(s):  
Marianna A Shubov ◽  
Laszlo P Kindrat

Abstract The distribution of natural frequencies of the Euler–Bernoulli beam subject to fully non-dissipative boundary conditions is investigated. The beam is clamped at the left end and equipped with a 4-parameter ($\alpha ,\beta ,k_1,k_2$) linear boundary feedback law at the right end. The $2 \times 2$ boundary feedback matrix relates the control input (a vector of velocity and its spatial derivative at the right end), to the output (a vector of shear and moment at the right end). The initial boundary value problem describing the dynamics of the beam has been reduced to the first order in time evolution equation in the state Hilbert space equipped with the energy norm. The dynamics generator has a purely discrete spectrum (the vibrational modes) denoted by $\{\nu _n\}_{n\in \mathbb {Z}^{\prime}}$. The role of the control parameters is examined and the following results have been proven: (i) when $\beta \neq 0$, the set of vibrational modes is asymptotically close to the vertical line on the complex $\nu$-plane given by the equation $\Re \nu = \alpha + (1-k_1k_2)/\beta$; (ii) when $\beta = 0$ and the parameter $K = (1-k_1 k_2)/(k_1+k_2)$ is such that $\left |K\right |\neq 1$ then the following relations are valid: $\Re (\nu _n/n) = O\left (1\right )$ and $\Im (\nu _n/n^2) = O\left (1\right )$ as $\left |n\right |\to \infty$; (iii) when $\beta =0$, $|K| = 1$, and $\alpha = 0$, then the following relations are valid: $\Re (\nu _n/n^2) = O\left (1\right )$ and $\Im (\nu _n/n) = O\left (1\right )$ as $\left |n\right |\to \infty$; (iv) when $\beta =0$, $|K| = 1$, and $\alpha>0$, then the following relations are valid: $\Re (\nu _n/\ln \left |n\right |) = O\left (1\right )$ and $\Im (\nu _n/n^2) = O\left (1\right )$ as $\left |n\right |\to \infty$.


2018 ◽  
Vol 28 (06) ◽  
pp. 1199-1231
Author(s):  
Gerardo Huaroto ◽  
Wladimir Neves

In this paper, we study a fractional type degenerate heat equation posed in bounded domains. We show the existence of solutions for measurable and bounded non-negative initial data, and homogeneous Dirichlet boundary condition. The nonlocal diffusion effect relies on an inverse of the [Formula: see text]-fractional Laplacian operator, and the solvability is proved for any [Formula: see text].


Author(s):  
Rajab A. Malookani ◽  
Wim T. van Horssen

The transverse vibrations of an axially moving string with a time-varying speed is studied in this paper. The governing equations of motion describing an axially moving string is analyzed using two different techniques. At first, the initial-boundary value problem is discretized using the Fourier sine series, and then the two timescales perturbation method is employed in search of infinite mode approximate solutions. Secondly, a new approach based on the two timescales perturbation method and the method of characteristics is used. It is found that there are infinitely many values of the velocity fluctuation frequency yielding infinitely many resonance conditions in the system. The response of the system with harmonically varying velocity function is computed for particular harmonic initial conditions.


Sign in / Sign up

Export Citation Format

Share Document