On Different Relative Growth Factors of Entire Functions

2020 ◽  
Vol 87 (1-2) ◽  
pp. 37
Author(s):  
Sanjib Kumar Datta ◽  
Banani Dutta ◽  
Nityagopal Biswas

In this paper we investigate some properties related to sum and product of different relative growth factors of an entire function with respect to another entire function in connection with a special type of non-decreasing, unbounded function ψ.

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Sanjib Kumar Datta ◽  
Tanmay Biswas ◽  
Debasmita Dutta

We study some relative growth properties of entire functions with respect to another entire function on the basis of generalized relative type and generalized relative weak type.


2020 ◽  
Vol 18 (1) ◽  
pp. 211-215
Author(s):  
Shengjiang Chen ◽  
Aizhu Xu

Abstract Let f(z) be an entire function of hyper order strictly less than 1. We prove that if f(z) and its nth exact difference {\Delta }_{c}^{n}f(z) share 0 CM and 1 IM, then {\Delta }_{c}^{n}f(z)\equiv f(z) . Our result improves the related results of Zhang and Liao [Sci. China A, 2014] and Gao et al. [Anal. Math., 2019] by using a simple method.


1973 ◽  
Vol 51 ◽  
pp. 123-130 ◽  
Author(s):  
Fred Gross ◽  
Chung-Chun Yang ◽  
Charles Osgood

An entire function F(z) = f(g(z)) is said to have f(z) and g(z) as left and right factors respe2tively, provided that f(z) is meromorphic and g(z) is entire (g may be meromorphic when f is rational). F(z) is said to be prime (pseudo-prime) if every factorization of the above form implies that one of the functions f and g is bilinear (a rational function). F is said to be E-prime (E-pseudo prime) if every factorization of the above form into entire factors implies that one of the functions f and g is linear (a polynomial). We recall here that an entire non-periodic function f is prime if and only if it is E-prime [5]. This fact will be useful in the sequel.


1995 ◽  
Vol 138 ◽  
pp. 169-177 ◽  
Author(s):  
Hong-Xun yi

For any set S and any entire function f letwhere each zero of f — a with multiplicity m is repeated m times in Ef(S) (cf. [1]). It is assumed that the reader is familiar with the notations of the Nevanlinna Theory (see, for example, [2]). It will be convenient to let E denote any set of finite linear measure on 0 < r < ∞, not necessarily the same at each occurrence. We denote by S(r, f) any quantity satisfying .


1995 ◽  
Vol 118 (3) ◽  
pp. 527-542 ◽  
Author(s):  
A. C. Offord

SummaryThis is a study of entire functions whose coefficients are independent random variables. When the space of such functions is symmetric it is shown that independence of the coefficients alone is sufficient to ensure that almost all such functions will, for large z, be large except in certain small neighbourhoods of the zeros called pits. In each pit the function takes every not too large value and these pits have a certain uniform distribution.


1988 ◽  
Vol 38 (3) ◽  
pp. 351-356 ◽  
Author(s):  
Peter L. Walker

We consider the Abelian functional equationwhere φ is a given entire function and g is to be found. The inverse function f = g−1 (if one exists) must satisfyWe show that for a wide class of entire functions, which includes φ(z) = ez − 1, the latter equation has a non-constant entire solution.


1966 ◽  
Vol 15 (2) ◽  
pp. 121-123 ◽  
Author(s):  
S. L. Segal

Let f(z) be an entire function, M(r) the maximum of f(z) on ∣z∣=r, and λ>1. Let Eλ=Eλ(f{z:log∣f(z)≦(1-λ)log(M∣z∣)}, and denote the density of Eλbywhere m is planar measure.


2020 ◽  
Vol 6 (3-4) ◽  
pp. 459-493
Author(s):  
Vasiliki Evdoridou ◽  
Lasse Rempe ◽  
David J. Sixsmith

AbstractSuppose that f is a transcendental entire function, $$V \subsetneq {\mathbb {C}}$$ V ⊊ C is a simply connected domain, and U is a connected component of $$f^{-1}(V)$$ f - 1 ( V ) . Using Riemann maps, we associate the map $$f :U \rightarrow V$$ f : U → V to an inner function $$g :{\mathbb {D}}\rightarrow {\mathbb {D}}$$ g : D → D . It is straightforward to see that g is either a finite Blaschke product, or, with an appropriate normalisation, can be taken to be an infinite Blaschke product. We show that when the singular values of f in V lie away from the boundary, there is a strong relationship between singularities of g and accesses to infinity in U. In the case where U is a forward-invariant Fatou component of f, this leads to a very significant generalisation of earlier results on the number of singularities of the map g. If U is a forward-invariant Fatou component of f there are currently very few examples where the relationship between the pair (f, U) and the function g has been calculated. We study this relationship for several well-known families of transcendental entire functions. It is also natural to ask which finite Blaschke products can arise in this manner, and we show the following: for every finite Blaschke product g whose Julia set coincides with the unit circle, there exists a transcendental entire function f with an invariant Fatou component such that g is associated with f in the above sense. Furthermore, there exists a single transcendental entire function f with the property that any finite Blaschke product can be arbitrarily closely approximated by an inner function associated with the restriction of f to a wandering domain.


Sign in / Sign up

Export Citation Format

Share Document