scholarly journals Planned redesign of beehive coke ovens for pollution control and power generation

2021 ◽  
Vol 69 (1) ◽  
pp. 25
Author(s):  
Binay Kumar Samanta ◽  
Manish Kumar Jain

Fossil fuel based thermal power or ovens not only exude greenhouse gases and pollutants but transfer enormous amount of waste heat up in air. Heat gets enveloped in the stratosphere and circulate around the earth; escalating global warming. France, Czech Republic, Slovakia, Austria, Andorra, Luxembourg, Poland and Germany made it the hottest June on record in 2019. Around 50 coke ovens around Dhanbad are losing and facing closure, with fate of employees doomed. Jharkhand State Pollution Control Board, Dhanbad had been issuing letters to the small-scale refractory and beehive hard coke-ovens to bring down stack gas emissions to below 150mg/Nm3 of suspended particulate matter (SPM), equivalent to the standards of large thermal power plants, deploying electrostatic precipitators (ESP). Some locally made pollution control devices were deployed, but these reduced the chimney draft and coking time increased. Installation of wet scrubbing methods would not be economic and slow down production. With experience as the Manager of a by-product coke oven, the chimney detour method with mechanical exhauster suggested for beehive coke oven. Proposed design not only can generate power, but also trap pollutants by a kind of wet scrubbing and produce byproducts like coal tar. Various associations of small-scale hard coke ovens and refractory industries had approached The Institution of Engineers (India), Dhanbad Local Centre. In this paper, the authors briefly present how waste heat can be converted to power, while absorbing pollutants in hydraulic main in the unique chimney detour method and producing coal tar, exuding clean gas.

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 245
Author(s):  
Andreas P. Weiß ◽  
Dominik Stümpfl ◽  
Philipp Streit ◽  
Patrick Shoemaker ◽  
Thomas Hildebrandt

The energy industry must change dramatically in order to reduce CO2-emissions and to slow down climate change. Germany, for example, decided to shut down all large nuclear (2022) and fossil thermal power plants by 2038. Power generation will then rely on fluctuating renewables such as wind power and solar. However, thermal power plants will still play a role with respect to waste incineration, biomass, exploitation of geothermal wells, concentrated solar power (CSP), power-to-heat-to-power plants (P2H2P), and of course waste heat recovery (WHR). While the multistage axial turbine has prevailed for the last hundred years in power plants of the several hundred MW class, this architecture is certainly not the appropriate solution for small-scale waste heat recovery below 1 MW or even below 100 kW. Simpler, cost-effective turbo generators are required. Therefore, the authors examine uncommon turbine architectures that are known per se but were abandoned when power plants grew due to their poor efficiency compared to the multistage axial machines. One of these concepts is the so-called Elektra turbine, a velocity compounded radial re-entry turbine. The paper describes the concept of the Elektra turbine in comparison to other turbine concepts, especially other velocity compounded turbines, such as the Curtis type. In the second part, the 1D design and 3D computational fluid dynamics (CFD) optimization of the 5 kW air turbine demonstrator is explained. Finally, experimentally determined efficiency characteristics of various early versions of the Elektra are presented, compared, and critically discussed regarding the originally defined design approach. The unsteady CFD calculation of the final Elektra version promised 49.4% total-to-static isentropic efficiency, whereas the experiments confirmed 44.5%.


2013 ◽  
Vol 313-314 ◽  
pp. 759-762
Author(s):  
Yun Feng Ma ◽  
Yan Xiang Liu ◽  
Tao Ji

In order to fully recycle power plant’s circulatingwater heat, improve the thermal efficiency and protect the environment, thispaper designs the comprehensive scheme of heat pumptechnology recycling power plant’s circulating water heat, including theboiler mae-up water pre-heating system, the central heating circulatingsystem and the domestic hot water circulating system, which not only run at thesame time but also function independently. Even in non-heating seasons,the waste heat of circulating water can be utilized fully. It is worthmentioning that this paper puts forward to install climate compensationdevice in the central heating system, which can perform intelligent district timesharing control to meet different users’ needs.


2013 ◽  
Author(s):  
Heather Roberts ◽  
Mitch Favrow ◽  
Jesse Coatney ◽  
David Yoe ◽  
Chenaniah Langness ◽  
...  

Thermoelectric power plants burn thousands of tons of non-renewable resources every day to heat water and create steam, which drives turbines that generate electricity. This causes a significant drain on local resources by diverting water for irrigation and residential usage into the production of energy. Moreover, the use of fossil reserves releases significant amounts of greenhouse and hazardous gases into the atmosphere. As electricity consumption continues to grow and populations rise, there is a need to find other avenues of energy production while conserving water resources. Co-combusting biomass with coal is one potential route that promotes renewable energy while reducing emissions from thermoelectric power plants. In order to move in this direction, there is a need for a low-energy and low-cost system capable of drying materials to a combustion appropriate level in order to replace a significant fraction of the fossil fuel used. Biomass drying is an ancient process often involving the preservation of foods using passive means, which is economically efficient but slow and impractical for large-scale fuel production. This effort, accomplished as an undergraduate capstone design project, instead implements an active drying system for poplar wood using theorized waste heat from the power plant and potentially solar energy. The use of small-scale prototypes demonstrate the principles of the system at a significantly reduced cost while allowing for calculation of mass and energy balances in the analysis of drying time, Coefficient of Performance, and the economics of the process. Experimental tests illustrate the need to distribute air and heat evenly amongst the biomass for consistent drying. Furthermore, the rotation of biomass is critical in order to address the footprint of the system when placing next to an existing thermoelectric power plant. The final design provides a first step towards the refinement and development of a system capable of efficiently returning an amount of biomass large enough to replace non-renewable resources. Finally, an innovative methodology applied to the dryer is discussed that could recover water evaporated from the biomass and utilize it for agricultural purposes or within the power plant thermodynamic cycle.


Sign in / Sign up

Export Citation Format

Share Document