scholarly journals Implementation of the Scalar Dissipation Rate in the REDIM Concept and its Validation for the Piloted Non-Premixed Turbulent Jet Flames

2021 ◽  
Vol 23 (3) ◽  
pp. 169
Author(s):  
C. Yu ◽  
U. Maas

In order to address the impact of the concentration gradients on the chemistry – turbulence interaction in turbulent flames, the REDIM reduced chemistry is constructed incorporating the scalar dissipation rate, which is a key quantity describing the turbulent mixing process. This is achieved by providing a variable gradient estimate in the REDIM evolution equation. In such case, the REDIM reduced chemistry is tabulated as a function of the reduced coordinates and the scalar dissipation rate as an additional progress variable. The constructed REDIM is based on a detailed transport model including the differential diffusion, and is validated for a piloted non-premixed turbulent jet flames (Sandia Flame D and E). The results show that the newly generated REDIM can reproduce the thermo-kinetic quantities very well, and the differential molecular diffusion effect can also be well captured.

Author(s):  
M. P. Sitte ◽  
C. Turquand d’Auzay ◽  
A. Giusti ◽  
E. Mastorakos ◽  
N. Chakraborty

Abstract The modelling of scalar dissipation rate in conditional methods for large-eddy simulations is investigated based on a priori direct numerical simulation analysis using a dataset representing an igniting non-premixed planar jet flame. The main objective is to provide a comprehensive assessment of models typically used for large-eddy simulations of non-premixed turbulent flames with the Conditional Moment Closure combustion model. The linear relaxation model gives a good estimate of the Favre-filtered scalar dissipation rate throughout the ignition with a value of the related constant close to the one deduced from theoretical arguments. Such value of the constant is one order of magnitude higher than typical values used in Reynolds-averaged approaches. The amplitude mapping closure model provides a satisfactory estimate of the conditionally filtered scalar dissipation rate even in flows characterised by shear driven turbulence and strong density variation.


Fluids ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 43 ◽  
Author(s):  
Andrei Lipatnikov ◽  
Shinnosuke Nishiki ◽  
Tatsuya Hasegawa

In this study, closure relations for total and turbulent convection fluxes of flame surface density and scalar dissipation rate were developed (i) by placing the focus of consideration on the flow velocity conditioned to the instantaneous flame within the mean flame brush and (ii) by considering the limiting behavior of this velocity at the leading and trailing edges of the flame brush. The model was tested against direct numerical simulation (DNS) data obtained from three statistically stationary, one-dimensional, planar, premixed turbulent flames associated with the flamelet regime of turbulent burning. While turbulent fluxes of flame surface density and scalar dissipation rate, obtained in the DNSs, showed the countergradient behavior, the model predicted the total fluxes reasonably well without using any tuning parameter. The model predictions were also compared with results computed using an alternative closure relation for the flame-conditioned velocity.


Sign in / Sign up

Export Citation Format

Share Document