THE INFLUENCE OF POSTWELD TEMPERING ON MECHANICAL BEHAVIOR OF FRICTION WELDED JOINTS OF 32G2 AND 40HN STEELS UNDER HIGH-CYCLE FATIGUE

Author(s):  
A. S. Atamashkin ◽  
◽  
E. Yu. Priymak ◽  
◽  

At modern mechanical facilities, the friction-welded joints are getting widespread as the most advanced production technique characterized by high efficiency, processability, cost-effectiveness, and safety. Moreover, it allows producing high-quality joints of a large number of different analogous and opposite metals and alloys. Despite all these advantages, one should consider that metal, in the process of welded joint formation, suffers a local thermo-deformational effect, which causes the gradient nature of the structure and residual strains of a welded joint. These factors directly influence the structure’s working ability and durability under fatigue loads, which are the most common cause for parts failure. The paper contains the assessment of the post-weld tempering influence on the cyclic life of welded joints of 32G2 and 40HN steels produced using the rotational friction welding technique. The authors tested laboratory specimens with welded joints under the high-cycle fatigue using the simulation machine with the two-point fastening of a revolving specimen under the action of even twisting moment. The study involved the statistical processing of the obtained results of cyclic life. Based on the metallographic analysis, the authors identified the weak points in welded points where the fatigue cracks initiation and progress occurred in the initial state and after tempering. The paper presents the fractographs illustrating the fracture mechanism of specimens under the study. The authors identified the influence of different tempering temperature modes on the cyclic life of the studied welded joints and the nature of their fracture. The study shows that tempering at the temperature over 400 °C promotes fracture acceleration under the effect of fatigue loads due to the development of return and polygonization processes in the vulnerable area of the thermomechanical action zone.

2012 ◽  
Vol 538-541 ◽  
pp. 1488-1491 ◽  
Author(s):  
Xiao Zhao ◽  
Jian Jun Zhao

The present paper deals with experimental studies on the ultra-high cycle fatigue property of Q345 bridge steel. Using the ultrasonic fatigue testing technique, specimens of Q345 welded joint with hourglass shape were designed using an analytical method combining with the finite element method and then fatigue tested in air at room temperature under fully reversed cyclic loading conditions (R=-1). The results show that the S-N curves of welded joints and relative base material specimens show continuously decreasing tendency in the very high cycle regime (105-109 cycles). Fatigue property of welded joint is much lower than that of base material and the fatigue strength of welded joint is only 45.0% of base material. Fracture can still occur on welded joints beyond 5 106 cycles, which indicates the fatigue limit defined at lifetime of 5 106 cycles cannot guarantee a safe design.


2013 ◽  
Vol 647 ◽  
pp. 817-821
Author(s):  
Chao He ◽  
Yong Jie Liu ◽  
Qing Yuan Wang

Very high cycle fatigue (VHCF) properties of welded joints under ultrasonic fatigue loading have been investigated for titanium alloy (TI-6Al-4V) and bridge steel (Q345). Ultrasonic fatigue tests of base metal and welded joints were carried out in ambient air at room temperature at a stress ratio R=-1. It was observed that the fatigue strength of welded joints reduced by 50-60% as compared to the base metal. The S-N fatigue curves in the range of 107~109 cycles of base metal and welded joints for both materials exhibited the characteristic of continually decreasing type. The fatigue failure still occurred after 107 cycles of loading, and the fatigue limit in traditional does not exist. The fatigue facture mainly located in the weld metal region at low cycle fatigue range, but in the fusion area in HCF and VHCF. Analysis of fracture surfaces analyzed by SEM revealed that the fatigue cracks initiated from welding defects such as pores, cracks and inclusions.


2013 ◽  
Vol 45 ◽  
pp. 190-197 ◽  
Author(s):  
H. Zaletelj ◽  
V. Haesen ◽  
L. Dedene ◽  
G. Fajdiga ◽  
M. Nagode

2020 ◽  
Vol 786 ◽  
pp. 139473
Author(s):  
Wen-Ke Wang ◽  
Yan Liu ◽  
Yang Guo ◽  
Zhen-Zhen Xu ◽  
Jie Zhong ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zhenhua Zhao ◽  
Lingfeng Wang ◽  
Chao Liu ◽  
Lulu Liu ◽  
Wei Chen

High-cycle fatigue (HCF) properties of 1Cr11Ni2W2MoV stainless steel impacted by a high-speed steel ball were studied by the foreign object damage (FOD) test and HCF test. The results show that the damage depth Z has the most obvious effect on the HCF limit of notched flat plate specimens, and the fatigue limit decreases with the increase of depth Z . The microcharacteristics of the FOD notch and HCF fracture of 1Cr11Ni2W2MoV stainless steel were observed by a scanning electron microscope (SEM). The results show that the microdamage features such as plastic deformation, loss of material, and microcracks promote the initiation and propagation of fatigue cracks, and the fatigue source area lies near the root of the notch. The Peterson formula and Worst Case Notch (WCN) mode were used to predict the HCF limit of flat plate specimens after FOD. The crack growth threshold was obtained by the crack growth test. The results show that the prediction results of both methods are conservative. For the notch with damage depth Z < 1  mm, the prediction accuracy of the WCN model is higher ( error   range < 30 % ). For the notch with damage depth Z > 1  mm, the prediction results of both methods have large errors (>30%) with the WCN model being slightly more accurate.


Author(s):  
James C. Newman ◽  
Balkrishna S. Annigeri

Plasticity effects and crack-closure modeling of small fatigue cracks were used on a Ti-6Al-4V alloy to calculate fatigue lives under various constant-amplitude loading conditions (negative to positive stress ratios, R) on notched and un-notched specimens. Fatigue test data came from a high-cycle-fatigue study by the U.S. Air Force and a metallic materials properties handbook. A crack-closure model with a cyclic-plastic-zone-corrected effective stress-intensity factor range and equivalent-initial-flaw-sizes (EIFS) were used to calculate fatigue lives using only crack-growth-rate data. For un-notched specimens, EIFS values were 25-μm; while for notched specimens, the EIFS values ranged from 6 to 12 μm for positive stress ratios and 25-μm for R = −1 loading. Calculated fatigue lives under a wide-range of constant-amplitude loading conditions agreed fairly well with the test data from low- to high-cycle fatigue conditions.


Sign in / Sign up

Export Citation Format

Share Document