scholarly journals Determination of cosmological parameters by the data on anisotropy of cosmic microwave background

2000 ◽  
Vol 1 (2) ◽  
pp. 42-46
Author(s):  
S.Ye. Apunevych
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Koustav Konar ◽  
Kingshuk Bose ◽  
R. K. Paul

AbstractBlackbody radiation inversion is a mathematical process for the determination of probability distribution of temperature from measured radiated power spectrum. In this paper a simple and stable blackbody radiation inversion is achieved by using an analytical function with three determinable parameters for temperature distribution. This inversion technique is used to invert the blackbody radiation field of the cosmic microwave background, the remnant radiation of the hot big bang, to infer the temperature distribution of the generating medium. The salient features of this distribution are investigated and analysis of this distribution predicts the presence of distortion in the cosmic microwave background spectrum.


2005 ◽  
Vol 216 ◽  
pp. 43-50
Author(s):  
J. B. Peterson ◽  
A. K. Romer ◽  
P. L. Gomez ◽  
P. A. R. Ade ◽  
J. J. Bock ◽  
...  

The Arcminute Cosmology Bolometer Array Receiver (Acbar) is a multifrequency millimeter-wave receiver optimized for observations of the Cosmic Microwave Background (CMB) and the Sunyaev-Zel'dovich (SZ) effect in clusters of galaxies. Acbar was installed on the 2.1 m Viper telescope at the South Pole in January 2001 and the results presented here incorporate data through July 2002. The power spectrum of the CMB at 150 GHz over the range ℓ = 150 — 3000 measured by Acbar is presented along with estimates for the values of the cosmological parameters within the context of ΛCDM models. The inclusion of ΩΛ greatly improves the fit to the power spectrum. Three-frequency images of the SZ decrement/increment are also presented for the galaxy cluster 1E0657–67.


Author(s):  
Yuto Minami

Abstract We study a strategy to determine miscalibrated polarization angles of cosmic microwave background (CMB) experiments using the observed $EB$ polarization power spectra of CMB and Galactic foreground emission. We apply the methodology of Y. Minami et al. (Prog. Theor. Exp. Phys. 2019, 083E02, 2019), developed for full-sky observations to ground-based experiments such as Simons Observatory. We take into account the $E$-to-$B$ leakage and $\ell$-to-$\ell$ covariance due to partial sky coverage using the public code NaMaster. We show that our method yields an unbiased estimate of miscalibrated angles. Our method also enables simultaneous determination of miscalibrated angles and the intrinsic $EB$ power spectrum of polarized dust emission when the latter is proportional to $\sqrt{C_\ell^{EE}C_\ell^{BB}}$ and $C_\ell^{BB}$ is proportional to $C_\ell^{EE}$.


1999 ◽  
Vol 310 (2) ◽  
pp. 565-570 ◽  
Author(s):  
S. L. Bridle ◽  
V. R. Eke ◽  
O. Lahav ◽  
A. N. Lasenby ◽  
M. P. Hobson ◽  
...  

2006 ◽  
Vol 15 (08) ◽  
pp. 1283-1298 ◽  
Author(s):  
LUNG-YIH CHIANG ◽  
PAVEL D. NASELSKY

The issue of non-Gaussianity is not only related to distinguishing the theories of the origin of primordial fluctuations, but also crucial for the determination of cosmological parameters in the framework of inflation paradigm. We present a method for testing non-Gaussianity on the whole-sky cosmic microwave background (CMB) anisotropies. This method is based on the Kuiper's statistic to probe the two-dimensional uniformity on a periodic mapping square associating phases: return mapping of phases of the derived CMB (similar to auto-correlation) and cross-correlations between phases of the derived CMB and foregrounds. Since phases reflect morphology, detection of cross-correlation of phases signifies the contamination of foreground signals in the derived CMB map. The advantage of this method is that one can cross-check the auto- and cross-correlation of phases of the derived maps and foregrounds, and mark off those multipoles in which the non-Gaussianity results from the foreground contaminations. We apply this statistic on the derived signals from the 1-year WMAP data. The auto-correlations of phases from the internal linear combination map show the significance above 95% C.L. against the random phase hypothesis on 17 spherical harmonic multipoles, among which some have pronounced cross-correlations with the foreground maps. We find that most of the non-Gaussianity found in the derived maps are from foreground contaminations. With this method we are better equipped to approach the issue of non-Gaussianity of primordial origin for the upcoming Planck mission.


Sign in / Sign up

Export Citation Format

Share Document