scholarly journals Methods of orthogonal design for solving systems of linear equations for two-dimensional Krylov subspace

2019 ◽  
Author(s):  
E.V. Bogomolova
2021 ◽  
Vol 24 (1) ◽  
Author(s):  
Ernesto Dufrechou

Many problems, in diverse areas of science and engineering, involve the solution of largescale sparse systems of linear equations. In most of these scenarios, they are also a computational bottleneck, and therefore their efficient solution on parallel architectureshas motivated a tremendous volume of research.This dissertation targets the use of GPUs to enhance the performance of the solution of sparse linear systems using iterative methods complemented with state-of-the-art preconditioned techniques. In particular, we study ILUPACK, a package for the solution of sparse linear systems via Krylov subspace methods that relies on a modern inverse-based multilevel ILU (incomplete LU) preconditioning technique.We present new data-parallel versions of the preconditioner and the most important solvers contained in the package that significantly improve its performance without affecting its accuracy. Additionally we enhance existing task-parallel versions of ILUPACK for shared- and distributed-memory systems with the inclusion of GPU acceleration. The results obtained show a sensible reduction in the runtime of the methods, as well as the possibility of addressing large-scale problems efficiently.


VLSI Design ◽  
1999 ◽  
Vol 10 (1) ◽  
pp. 99-116 ◽  
Author(s):  
C. J. Alpert ◽  
A. E. Caldwell ◽  
T. F. Chan ◽  
D. J.-H. Huang ◽  
A. B. Kahng ◽  
...  

The top-down “quadratic placement” methodology is rooted in such works as [36, 9, 32] and is reputedly the basis of commercial and in-house VLSI placement tools. This methodology iterates between two basic steps: solving sparse systems of linear equations to achieve a continuous placement solution, and “legalization” of the placement by transportation or partitioning. Our work, which extends [5], studies implementation choices and underlying motivations for the quadratic placement methodology. We first recall some observations from [5], e.g., that (i) Krylov subspace engines for solving sparse linear systems are more effective than traditional successive over-relaxation (SOR) engines [33] and (ii) that correlation convergence criteria can maintain solution quality while using substantially fewer solver iterations. The focus of our investigation is the coupling of numerical solvers to iterative partitioners that is a hallmark of the quadratic placement methodology. We provide evidence that this coupling may have historically been motivated by the pre-1990’s weakness of min-cut partitioners, i.e., numerical engines were needed to provide helpful hints to weak min-cut partitioners. In particular, we show that a modern multilevel FM implementation [2] derives no benefit from such coupling. We also show that most insights obtained from study of individual min-cut partitioning instances (within the top-down placement) also hold within the overall context of a complete top-down placer implementation.


Author(s):  
A. I. Belousov

The main objective of this paper is to prove a theorem according to which a method of successive elimination of unknowns in the solution of systems of linear equations in the semi-rings with iteration gives the really smallest solution of the system. The proof is based on the graph interpretation of the system and establishes a relationship between the method of sequential elimination of unknowns and the method for calculating a cost matrix of a labeled oriented graph using the method of sequential calculation of cost matrices following the paths of increasing ranks. Along with that, and in terms of preparing for the proof of the main theorem, we consider the following important properties of the closed semi-rings and semi-rings with iteration.We prove the properties of an infinite sum (a supremum of the sequence in natural ordering of an idempotent semi-ring). In particular, the proof of the continuity of the addition operation is much simpler than in the known issues, which is the basis for the well-known algorithm for solving a linear equation in a semi-ring with iteration.Next, we prove a theorem on the closeness of semi-rings with iteration with respect to solutions of the systems of linear equations. We also give a detailed proof of the theorem of the cost matrix of an oriented graph labeled above a semi-ring as an iteration of the matrix of arc labels.The concept of an automaton over a semi-ring is introduced, which, unlike the usual labeled oriented graph, has a distinguished "final" vertex with a zero out-degree.All of the foregoing provides a basis for the proof of the main theorem, in which the concept of an automaton over a semi-ring plays the main role.The article's results are scientifically and methodologically valuable. The proposed proof of the main theorem allows us to relate two alternative methods for calculating the cost matrix of a labeled oriented graph, and the proposed proofs of already known statements can be useful in presenting the elements of the theory of semi-rings that plays an important role in mathematical studies of students majoring in software technologies and theoretical computer science.


Author(s):  
Yuka Hashimoto ◽  
Takashi Nodera

AbstractThe Krylov subspace method has been investigated and refined for approximating the behaviors of finite or infinite dimensional linear operators. It has been used for approximating eigenvalues, solutions of linear equations, and operator functions acting on vectors. Recently, for time-series data analysis, much attention is being paid to the Krylov subspace method as a viable method for estimating the multiplications of a vector by an unknown linear operator referred to as a transfer operator. In this paper, we investigate a convergence analysis for Krylov subspace methods for estimating operator-vector multiplications.


2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Zhijun Luo ◽  
Lirong Wang

A new parallel variable distribution algorithm based on interior point SSLE algorithm is proposed for solving inequality constrained optimization problems under the condition that the constraints are block-separable by the technology of sequential system of linear equation. Each iteration of this algorithm only needs to solve three systems of linear equations with the same coefficient matrix to obtain the descent direction. Furthermore, under certain conditions, the global convergence is achieved.


1990 ◽  
Vol 45 (11-12) ◽  
pp. 1219-1229 ◽  
Author(s):  
D.-A. Becker ◽  
E. W. Richter

AbstractA generalization of the usual method of similarity analysis of differential equations, the method of partially invariant solutions, was introduced by Ovsiannikov. The degree of non-invariance of these solutions is characterized by the defect of invariance d. We develop an algorithm leading to partially invariant solutions of quasilinear systems of first-order partial differential equations. We apply the algorithm to the non-linear equations of the two-dimensional non-stationary ideal MHD with a magnetic field perpendicular to the plane of motion.


Sign in / Sign up

Export Citation Format

Share Document