Partially Invariant Solutions for Two-dimensional Ideal MHD Equations

1990 ◽  
Vol 45 (11-12) ◽  
pp. 1219-1229 ◽  
Author(s):  
D.-A. Becker ◽  
E. W. Richter

AbstractA generalization of the usual method of similarity analysis of differential equations, the method of partially invariant solutions, was introduced by Ovsiannikov. The degree of non-invariance of these solutions is characterized by the defect of invariance d. We develop an algorithm leading to partially invariant solutions of quasilinear systems of first-order partial differential equations. We apply the algorithm to the non-linear equations of the two-dimensional non-stationary ideal MHD with a magnetic field perpendicular to the plane of motion.

2014 ◽  
Vol 7 (2) ◽  
pp. 1829-1864
Author(s):  
A. Sargent ◽  
J. L. Fastook

Abstract. A linear non-iterative algorithm is suggested for solving nonlinear isothermal steady-state Morland–MacAyeal ice shelf equations. The idea of the algorithm is in replacing the problem of solving the non-linear second order differential equations for velocities with a system of linear first order differential equations for stresses. The resulting system of linear equations can be solved numerically with direct methods which are faster than iterative methods for solving corresponding non-linear equations. The suggested algorithm is applicable if the boundary conditions for stresses can be specified. The efficiency of the linear algorithm is demonstrated for one-dimensional and two-dimensional ice shelf equations by comparing the linear algorithm and the traditional iterative algorithm on derived manufactured solutions. The linear algorithm is shown to be as accurate as the traditional iterative algorithm but significantly faster. The method may be valuable as the way to increase the efficiency of complex ice sheet models a part of which requires solving the ice shelf model as well as to solve efficiently two-dimensional ice-shelf equations.


2017 ◽  
Vol 24 (2) ◽  
pp. 277-285 ◽  
Author(s):  
Zdeněk Opluštil

AbstractWe consider the following two-dimensional system of non-linear equations:u^{\prime}=g(t)|v|^{\frac{1}{\alpha}}\operatorname{sgn}v,\quad v^{\prime}=-p(t% )|u|^{\alpha}\operatorname{sgn}u,where {\alpha>0}, and {g\colon{[0,+\infty[}\rightarrow{[0,+\infty[}} and {p\colon{[0,+\infty[}\rightarrow\mathbb{R}} are locally integrable functions. Moreover, we assume that the coefficient g is non-integrable on {[0,+\infty]}. We establish new non-oscillation criteria for the considered system, which generalize known results for the corresponding linear system and for second order differential equations. In particular, the presented criteria are in compliance with the results of Hille and Nehari.


2010 ◽  
Vol 77 (2) ◽  
pp. 169-191
Author(s):  
HARI SHANKER GUPTA ◽  
PHOOLAN PRASAD

AbstractOn a characteristic surface Ω of a hyperbolic system of first-order equations in multi-dimensions (x, t), there exits a compatibility condition which is in the form of a transport equation along a bicharacteristic on Ω. This result can be interpreted also as a transport equation along rays of the wavefront Ωt in x-space associated with Ω. For a system of quasi-linear equations, the ray equations (which has two distinct parts) and the transport equation form a coupled system of underdetermined equations. As an example of this bicharacteristic formulation, we consider two-dimensional unsteady flow of an ideal magnetohydrodynamics gas with a plane aligned magnetic field. For any mode of propagation in this two-dimensional flow, there are three ray equations: two for the spatial coordinates x and y and one for the ray diffraction. In spite of little longer calculations, the final four equations (three ray equations and one transport equation) for the fast magneto-acoustic wave are simple and elegant and cannot be derived in these simple forms by use of a computer program like REDUCE.


1994 ◽  
Vol 49 (3) ◽  
pp. 458-464
Author(s):  
Dirk-A. Becker

Abstract The method of partially invariant solutions of PDE systems was introduced by Ovsiannikov as a generalization of the classical similarity analysis. It offers a possibility to calculate exact solutions possessing a higher degree of freedom than similarity solutions. Ovsiannikov's algorithm, however, is somewhat hard to apply because one has to deal with three equation systems derived from the original PDE system. By means of the two-dimensional Euler equations, we show how the algorithm can be essentially simplified if classical similarity solutions are already known. Further, we prove a necessary criterion for the simplified algorithm to be senseful.


1972 ◽  
Vol 39 (3) ◽  
pp. 689-695 ◽  
Author(s):  
W. W. Recker

The two-dimensional equations of magnetoelastodynamics are considered as a symmetric hyperbolic system of linear first-order partial-differential equations in three independent variables. The characteristic properties of the system are determined and a numerical method for obtaining the solution to mixed initial and boundary-value problems in plane magnetoelastodynamics is presented. Results on the von Neumann necessary condition are presented. Application of the method to a problem which has a known solution provides further numerical evidence of the convergence and stability of the method.


Author(s):  
N. Parhi

AbstractIn this paper sufficient conditions have been obtained for non-oscillation of non-homogeneous canonical linear differential equations of third order. Some of these results have been extended to non-linear equations.


2012 ◽  
Vol 34 (1) ◽  
pp. 7-17
Author(s):  
Dao Huy Bich ◽  
Nguyen Dang Bich

The present paper deals with a class of non-linear ordinary second-order differential equations with exact solutions. A procedure for finding the general exact solution based on a known particular one is derived. For illustration solutions of some non-linear equations occurred in many problems of solid mechanics are considered.


2013 ◽  
Vol 5 (2) ◽  
pp. 212-221
Author(s):  
Houguo Li ◽  
Kefu Huang

AbstractInvariant solutions of two-dimensional elastodynamics in linear homogeneous isotropic materials are considered via the group theoretical method. The second order partial differential equations of elastodynamics are reduced to ordinary differential equations under the infinitesimal operators. Three invariant solutions are constructed. Their graphical figures are presented and physical meanings are elucidated in some cases.


The differential equations arising in most branches of applied mathematics are linear equations of the second order. Internal ballistics, which is the dynamics of the motion of the shot in a gun, requires, except with the simplest assumptions, the discussion of non-linear differential equations of the first and second orders. The writer has shown in a previous paper* how such non-linear equations arise when the pressure-index a in the rate-of-burning equation differs from unity, although only the simplified case of non-resisted motion was there considered. It is proposed in the present investigation to examine some cases of resisted motion taking the pressure-index equal to unity, to give some extensions of the previous work, and to consider, so far as is possible, the nature and the solution of the types of differential equations which arise.


Sign in / Sign up

Export Citation Format

Share Document