scholarly journals Impact of the Optimal Tilt Angle on the Solar Photovoltaic Array Size and Cost for a 100 kWh Solar Power System in Imo State

Author(s):  
Ozuomba Simeon ◽  
Iniobong Edifon Abasi Obot ◽  
Idorenyin Markson
2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Naveed ur Rehman

Abstract A method for optimizing the geometrical layout for a façade-mounted solar photovoltaic array is presented. Unlike conventional studies, this work takes into account the finite height of the façade, which is more realistic. The proposed analytical relationships and optimization routine evaluate the best tilt angle and the number of panels such that the whole layout receives the maximum solar radiation, year-round. This is achieved while ensuring that the panels are at a safe minimum distance to avoid mutual shading issues. Validation was performed by simulating the scenarios and comparing the results with manual measurements taken in a three-dimensional drafting program. The method was then used to evaluate designs for facades with a variety of orientations, hypothetically located in Auckland, New Zealand. For this case study, the per-panel and total year-round energy accumulation associated with the number of panels were determined. The results showed that more panels can be integrated into constrained fields by sacrificing the year-round best value of the tilt angle. Therefore, increasing the number of panels may decrease the energy accumulation performance.


Clean Energy ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 57-78
Author(s):  
Sohaib Nasr Mohamed Abdalla ◽  
Hakan Özcan

Abstract Developing nations have a critical need to increase electricity supply. Sudan has much unrealized potential for generating solar energy, particularly in the northern region. This research study focuses on designing a 1-GW solar power station in northern Sudan using the PVsyst7.0 software program. To determine the appropriate location for the solar-energy station, 14 criteria were evaluated. This process is generic and suitable for use in any other country. The method for conducting cash-flow estimates and return on investment is illustrated in the economic evaluation. The city of Dongola, the capital of the northern state, was selected because of its high annual irradiance on a horizontal surface at ~2333.2 kWh/m2. The simulation results show that the annual optimum tilt angle of inclination for photovoltaic (PV) modules is 30°, the energy production is 1 979 259 MWh/yr and the average annual performance rate is 0.810. In addition, the electric power consumption per capita in Sudan is 269 kWh/yr, so the proposed solar power plant with 1 979 259 MWh/yr can provide energy to 7.4 million people per year annually and reduce carbon emissions by ~18 million tons of carbon dioxide per year. Economic calculations show that the levelized cost of electricity (LCOE) is $0.06/kWh, the discounted payback period is ~11 years and the net present value is $635 291 000. As a result, the proposed grid-connected PV solar plant is considered economically, technically and environmentally feasible in Sudan.


2021 ◽  
Vol 1101 (1) ◽  
pp. 012039
Author(s):  
N Abdul Rahman ◽  
A Albania Linus ◽  
A Philip ◽  
E E Jihed ◽  
U J Gilan ◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-6
Author(s):  
Meng-Hui Wang

Due to the complex parameters of a solar power system, the designer not only must think about the load demand but also needs to consider the price, weight, and annual power generating capacity (APGC) and maximum power of the solar system. It is an important task to find the optimal solar power system with many parameters. Therefore, this paper presents a novel decision-making method based on the extension theory; we call it extension decision-making method (EDMM). Using the EDMM can make it quick to select the optimal solar power system. The paper proposed this method not only to provide a useful estimated tool for the solar system engineers but also to supply the important reference with the installation of solar systems to the consumer.


Sign in / Sign up

Export Citation Format

Share Document