scholarly journals Technique for Detecting Subsurface Cavities of Urban Road Using Multichannel Ground-penetrating Radar Equipment

2020 ◽  
Vol 32 (12) ◽  
pp. 4413
Author(s):  
Yoon Jin-sung ◽  
Youm Minkyo ◽  
Park Sehwan ◽  
Kim Junkyeong
2019 ◽  
Vol 24 (2) ◽  
pp. 265-276
Author(s):  
Fathi M.S. Abdullah ◽  
Abdullatif A. Al-Shuhail ◽  
Oluseun A. Sanuade

Subsurface cavities occur naturally by dissolution of carbonates and evaporites or by human action, such as the construction of tunnels and tombs. They can be filled with air, water, sediments, or a combination. Gravity and ground penetrating radar (GPR) methods have been used widely to determine the location and size of subsurface cavities. The objective of this study is to present a quantitative approach to estimate the porosity and water saturation of cavity-filling materials from GPR and gravity measurements. The approach uses appropriate rock-physics models of the dielectric permittivity and density of a shallow cavity and estimates the porosity and water saturation inside the cavity by solving the two model equations simultaneously for these two variables. We test the proposed method using synthetic GPR and gravity data sets corresponding to three spherical-cavity models: air-filled, water-filled, and a partially-saturated sand filling. Results show that the method is accurate in retrieving the correct porosity within 0.76% error and water saturation within 2.4% error. We also apply the method on three published case studies over air-filled rectangular cavities. We found that the proposed method estimated the correct porosity and water saturation in one study but failed with the other studies. However, when the procedure was repeated with gravity values calculated from parameters reported in these studies, the proposed method estimated the correct porosity and water saturation accurately.


2019 ◽  
Vol 49 (4) ◽  
pp. 479-496 ◽  
Author(s):  
Roman Pašteka ◽  
David Kušnirák ◽  
Dennis Wilken ◽  
René Putiška ◽  
Juraj Papčo ◽  
...  

Abstract This contribution is focused on a common utilization of microgravimetry (very precise and detailed gravimetry) and geoeletrical methods (ground penetrating radar and electric resistivity tomography) in the detection of subsurface cavities in non-destructive archaeological prospection. Both methods can separately detect such kind of subsurface objects, but their complementary and at the same time an eliminating aspect can be very helpful in the interpretation of archaeogeophysical datasets. These properties were shown in various published case-studies. Here we present some more typical examples. Beside this, we present here for a first time an application of the electric resistivity tomography in the interior of a building (a church) in Slovakia. We also demonstrate an example with an extremely small acquisition step in microgravity as a trial for the detection of cavities with very small dimensions – in this case small separated spaces for coffins as a part of the detected crypt (so called columbarium). Unfortunately, these cavities were too small to be reliably detected by the microgravity method. We have tried the well-known 3D Euler deconvolution method to obtain usable depth estimates from the acquired anomalous gravity field. Results from this method were in the majority of cases plausible (sometimes little bit too shallow), when compared with the results from the ground penetrating radar. In one selected example, the 3D Euler solutions were too deep and in the present stage of study we cannot well explain this situation. In general, all presented results support an important role of common combination of several geophysical methods, when searching for subsurface cavities in non-destructive archaeological prospection.


Author(s):  
M. S. Sudakova ◽  
M. L. Vladov ◽  
M. R. Sadurtdinov

Within the ground penetrating radar bandwidth the medium is considered to be an ideal dielectric, which is not always true. Electromagnetic waves reflection coefficient conductivity dependence showed a significant role of the difference in conductivity in reflection strength. It was confirmed by physical modeling. Conductivity of geological media should be taken into account when solving direct and inverse problems, survey design planning, etc. Ground penetrating radar can be used to solve the problem of mapping of halocline or determine water contamination.


2017 ◽  
Vol 3 (1) ◽  
pp. 73-83
Author(s):  
Rahmayati Alindra ◽  
Heroe Wijanto ◽  
Koredianto Usman

Ground Penetrating Radar (GPR) adalah salah satu jenis radar yang digunakan untuk menyelidiki kondisi di bawah permukaan tanah tanpa harus menggali dan merusak tanah. Sistem GPR terdiri atas pengirim (transmitter), yaitu antena yang terhubung ke generator sinyal dan bagian penerima (receiver), yaitu antena yang terhubung ke LNA dan ADC yang kemudian terhubung ke unit pengolahan data hasil survey serta display sebagai tampilan output-nya dan post  processing untuk alat bantu mendapatkan informasi mengenai suatu objek. GPR bekerja dengan cara memancarkan gelombang elektromagnetik ke dalam tanah dan menerima sinyal yang dipantulkan oleh objek-objek di bawah permukaan tanah. Sinyal yang diterima kemudian diolah pada bagian signal processing dengan tujuan untuk menghasilkan gambaran kondisi di bawah permukaan tanah yang dapat dengan mudah dibaca dan diinterpretasikan oleh user. Signal processing sendiri terdiri dari beberapa tahap yaitu A-Scan yang meliputi perbaikan sinyal dan pendektesian objek satu dimensi, B-Scan untuk pemrosesan data dua dimensi  dan C-Scan untuk pemrosesan data tiga dimensi. Metode yang digunakan pada pemrosesan B-Scan salah satunya adalah dengan  teknik pemrosesan citra. Dengan pemrosesan citra, data survey B-scan diolah untuk didapatkan informasi mengenai objek. Pada penelitian ini, diterapkan teori gradien garis pada pemrosesan citra B-scan untuk menentukan bentuk dua dimensi dari objek bawah tanah yaitu persegi, segitiga atau lingkaran. 


Sign in / Sign up

Export Citation Format

Share Document