scholarly journals Magnetic Particle Imaging and its Application

Author(s):  
Farzaneh Ghorbani ◽  
Somayyeh Seyedi ◽  
Alireza Montazerabadi

Magnetic particle imaging was introduced in 2005 as a new tomographic medical imaging modality and is still under development. Magnetic particle imaging determines the spatial distribution of magnetic nanoparticles by their interaction with an external excitation magnetic field. Therefore, there is no ionizing radiation dose in this trace-based modality. Magnetic nanoparticle imaging provides characteristics, including high spatial and temporal resolution, high sensitivity, expected from an ideal imaging method, and it is also an inherently quantitative method. In this paper, the properties of magnetic fields and particles used in Magnetic particle imaging, as well as its applications are discussed.

2020 ◽  
Vol 56 (24) ◽  
pp. 3504-3507 ◽  
Author(s):  
Lucy Gloag ◽  
Milad Mehdipour ◽  
Marina Ulanova ◽  
Kevin Mariandry ◽  
Muhammad Azrhy Nichol ◽  
...  

Zero valent iron core–iron oxide shell nanoparticles coated with a multi-phosphonate brush co-polymer are shown to be small and effective magnetic nanoparticle imaging tracers.


2015 ◽  
Vol 1 (1) ◽  
pp. 1-4
Author(s):  
I. Kuschnerus ◽  
K. Lüdtke-Buzug

AbstractSince 2005, Magnetic Particle Imaging (MPI) is handled as a key technology with great potential in medical applications as an imaging method [1]. The superparamagnetic iron oxide nanoparticles (SPIONs) which are already used as a tracer in MPI, combined with various polymers, are being investigated in order to enhance this potential. A combination of polymers such as polyethylene (PE) and polyurethane (PU) and SPIONs could be used as a coating for medical devices, or added to semi-rigid polyurethane for the production of surgical instruments [2]. This would be of great interest, since the method provides high sensitivity with simultaneous high spatial resolution and three-dimensional imaging in real time. Therefore various superparamagnetic coatings were developed, tested and characterized. Finally SPIONs and various polymers were combined directly and used for MPI-compatible models.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Sebastian Draack ◽  
Meinhard Schilling ◽  
Thilo Viereck

Abstract Magnetic particle imaging (MPI) is a young imaging modality for biomedical applications. It uses magnetic nanoparticles as a tracer material to produce three-dimensional images of the spatial tracer distribution in the field-of-view. Since the tracer magnetization dynamics are tied to the hydrodynamic mobility via the Brownian relaxation mechanism, MPI is also capable of mapping the local environment during the imaging process. Since the influence of viscosity or temperature on the harmonic spectrum is very complicated, we used magnetic particle spectroscopy (MPS) as an integral measurement technique to investigate the relationships. We studied MPS spectra as function of both viscosity and temperature on model particle systems. With multispectral MPS, we also developed an empirical tool for treating more complex scenarios via a calibration approach. We demonstrate that MPS/MPI are powerful methods for studying particle-matrix interactions in complex media.


2015 ◽  
Vol 1 (1) ◽  
pp. 249-253 ◽  
Author(s):  
André Behrends ◽  
Matthias Graeser ◽  
Thorsten M. Buzug

AbstractImage quality in the new imaging modality magnetic particle imaging (MPI) heavily relies on the quality of the magnetic nanoparticles in use. Therefore, it is crucial to understand the behaviour of such particles. A common technique to analyze the behaviour of the particles is magnetic particle spectrometry (MPS). However, most spectrometers are limited to measurements at a single or multiple discrete excitation frequencies. This paper introduces a frequency-tunable spectrometer, able to perform measurements in the range of 100 Hz - 24kHz.


2015 ◽  
Vol 118 (17) ◽  
pp. 173906 ◽  
Author(s):  
Rohan Dhavalikar ◽  
Lorena Maldonado-Camargo ◽  
Nicolas Garraud ◽  
Carlos Rinaldi

2015 ◽  
Vol 1 (1) ◽  
pp. 353-355
Author(s):  
Matthias Weber ◽  
Klaas Bente ◽  
Anselm von Gladiss ◽  
Matthias Graeser ◽  
Thorsten M. Buzug

AbstractMagnetic Particle Imaging (MPI) is a new imaging modality with the potential to be a new medical tool for angiographic diagnostics. It is capable of visualizing the spatial distribution of super-paramagnetic nanoparticles in high temporal and spatial resolution. Furthermore, the new spatial encoding scheme of a field free line (FFL) promises a ten-fold higher sensitivity. So far, all know imaging devices featuring this new technique feature slow data acquisition and thus, are far away from real-time imaging capability. An actual real-time approach requires a complex field generator and an application of currents with very precise amplitude and phase. Here, we present the first implementation and calibration of a dynamic FFL field sequence enabling the acquisition of 50 MPI images per second in a mouse sized scanner.


Sign in / Sign up

Export Citation Format

Share Document